
CHAPTER SEVEN
Variable Frequency Operation
of Induction Motors
1. INTRODUCTION

We saw in Chapter 6 the many attributes of the induction motor which have
made it the preferred workhorse of industry. These include simple low-cost
construction which lends itself to totally enclosed designs suitable for dirty or even
hazardous environments; limited routine maintenance with no brushes; only three
power connections; and good full-load efficiency. We have also seen that when
operated from the utility supply there are a number of undesirable characteristics,
the most notable being that there is only one speed of operation (or more precisely
a narrow load-dependent speed range). In addition, starting equipment is often
required to avoid excessive currents of up to six times rated current when starting
direct-on-line; reversal requires two of the power cables to be interchanged; and
the instantaneous torque cannot be controlled, so the transient performance is
poor.

We will see in this chapter that all the good features of the mains operated
induction motor are retained and all the bad characteristics detailed above can be
avoided when the induction motor is supplied from a variable-frequency source; i.e.
its supply comes from an inverter.

The chapter divides broadly into two parts, both dealing with the capabilities
of the induction motor when supplied from an inverter. The first part (sections
2 and 3) deals with the steady-state behavior when the operating frequency is solely
determined by the inverter, and is independent of what is happening at the motor.
We will refer to this set-up as ‘inverter-fed’, and in the early days of converter-
driven induction motors this was the norm, the frequency being set by an oscillator
that controlled the sequential periodic switching of the devices in the inverter. We
will see that by appropriate control of the frequency and voltage we are able to
operate over a very wide range of the torque–speed plane, but we will also identify
the factors that place limits on what can be achieved. On a steady-state basis, this
arrangement proved able to compete with the d.c. drive, but even when incor-
porated into a closed-loop control scheme the transient performance remained
inferior. It is well worth absorbing the main messages from this study because
although most contemporary drives now operate on a different basis, the steady-
state running conditions at the motor remain the same. Readers who were able to
follow the material in Chapter 6 should find this part straightforward.
Electric Motors and Drives
http://dx.doi.org/10.1016/B978-0-08-098332-5.00007-3

� 2013 Austin Hughes and William Drury.
Published by Elsevier Ltd.

All rights reserved. 205j

http://dx.doi.org/10.1016/B978-0-08-098332-5.00007-3


206 Electric Motors and Drives
In the second major part of this chapter (from section 4), we explore both
‘field-oriented’ and ‘direct torque’ methods for control of the inverter/induction
motor combination. We prefer not to use the term ‘inverter-fed’ in these
circumstances because although the motor derives its supply from an inverter,
the switching of the inverter devices is determined by the state of the flux
and currents in the motor, rather than being imposed from a separate oscil-
lator. Both methods allow us to achieve hitherto unheard of levels of
transient performance, but it is important to note that they only became
possible because of the development of fast, cheap, digital processors that can
implement the high-speed calculations necessary to model and control the motor
in real time.

Understanding field-oriented control is usually regarded as challenging, even for
experienced drives personnel, not least because the subject tends to be highly
mathematical. However, although we will adopt a largely graphical approach to get
to the heart of the matter, it is likely that most readers will find it advisable to absorb
the tutorial material in sections 4 and 5 first.

For most of this chapter we will assume that the motor is supplied from an
ideal balanced sinusoidal voltage source. Our justification for doing this is that
although the pulse-width-modulated voltage waveform supplied by the inverter
will not be sinusoidal (see Figure 7.1), the motor performance depends
principally on the fundamental (sinusoidal) component of the applied voltage.
This is a somewhat surprising but extremely welcome simplification, because it
allows us to make use of our knowledge of how the induction motor behaves
with a sinusoidal supply to anticipate how it performs when fed from an
inverter.

There will be more discussion of the various control arrangements and prac-
ticalities of inverter-fed operation in Chapter 8.
Figure 7.1 Typical voltage and current waveforms for PWM inverter-fed induction
motor. (The fundamental-frequency component is shown by the dotted line.)
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2. INVERTER-FED INDUCTION MOTOR DRIVES

It was explained in Chapter 6 that the induction motor can only run efficiently at
low slips, i.e. close to the synchronous speed of the rotating field. The best method
of speed control must therefore provide for continuous smooth variation of the
synchronous speed, which in turn calls for variation of the supply frequency. This is
readily achieved using a power electronic inverter (as discussed in Chapter 2) to
supply the motor. A complete speed control scheme, which is illustrated with speed
feedback, is shown in simplified block diagram form in Figure 7.2.
Figure 7.2 General arrangement of inverter-fed variable-frequency induction motor
controlled-speed drive.
The arrangement shown in Figure 7.2 shows the motor with a speed sensor
attached to the motor shaft. For all but the most demanding dynamic applications,
or where full torque at standstill is a requirement, a speed sensor would not normally
be required. This is good news as fitting a speed sensor to a standard induction
motor involves significant additional cost and additional cabling.

We should recall that the function of the converter (i.e. rectifier and variable-
frequency inverter) is to draw power from the fixed-frequency constant-voltage
mains, rectify it and then convert it to variable frequency, variable voltage for
driving the induction motor. Both the rectifier and the inverter employ switching
strategies (see Chapter 2), so the power conversions are accomplished efficiently and
the converter can be compact.
2.1 Steady-state operation – importance of achieving
full flux

Three simple relationships need to be borne in mind in order to simplify under-
standing of how the inverter-fed induction motor behaves. First, we established in
Chapter 5 that, for a given induction motor, the torque developed depends on the
magnitude of the rotating flux density wave, and on the slip speed of the rotor, i.e.
on the relative velocity of the rotor with respect to the flux wave. Secondly, the
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strength or amplitude of the flux wave depends directly on the supply voltage to the
stator windings, and inversely on the supply frequency. Thirdly, the absolute speed
of the flux wave depends directly on the supply frequency.

Recalling that the motor can only operate efficiently when the slip is small, we
see that the basic method of speed control rests on the control of the speed of
rotation of the flux wave (i.e. the synchronous speed), by control of the supply
frequency. If the motor is a 4-pole one, for example, the synchronous speed will be
1500 rev/min when supplied at 50 Hz, 1800 rev/min at 60 Hz, 750 rev/min at
25 Hz, and so on. The no-load speed will therefore be almost exactly proportional
to the supply frequency, because the torque at no load is small and the corre-
sponding slip is also very small.

Turning now to what happens on load, we know that when a load is applied the
rotor slows down, the slip increases, more current is induced in the rotor, and more
torque is produced. When the speed has reduced to the point where the motor
torque equals the load torque, the speed becomes steady. We normally want the
drop in speed with load to be as small as possible, not only to minimize the drop in
speed with load, but also to maximize efficiency: in short, we want to minimize the
slip for a given load.

We saw in Chapter 5 that the slip for a given torque depends on the amplitude
of the rotating flux wave: the higher the flux, the smaller the slip needed for a given
torque. It follows that having set the desired speed of rotation of the flux wave by
controlling the output frequency of the inverter we must also ensure that the
magnitude of the flux is adjusted so that it is at its full (rated) value,1 regardless of the
speed of rotation. This is achieved, in principle, by making the output voltage from
the inverter vary in the appropriate way in relation to the frequency.

Given that the amplitude of the flux wave is proportional to the supply voltage
and inversely proportional to the frequency, it follows that if we arrange that the
voltage supplied by the inverter varies in direct proportion to the frequency, the
flux wave will have a constant amplitude. This simple mode of operation – where
the V/f ratio is constant –was for many years the basis of the control strategy applied
to most inverter-fed induction motors, and it can still be found in some commercial
products.

Many inverters are designed for direct connection to the utility supply, without
a transformer, and as a result the maximum inverter output voltage is limited to
a value similar to that of the supply system. Since the inverter will normally be used
to supply a standard induction motor designed, for example, for 400 V, 50 Hz
operation, it is obvious that when the inverter is set to deliver 50 Hz, the voltage
1 In general, operating at rated flux gives the best performance and on most loads the highest efficiency.
Some commercial drives offer a mode of control in which the flux is reduced typically with the
square of the speed: this can provide some benefit at low speeds for fan and pump-type loads where
the magnetizing current accounts for a significant proportion of the motor losses.
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should be 400 V, which is within the inverter’s voltage range. But when the
frequency is raised to say 100 Hz, the voltage should – ideally – be increased to
800 V in order to obtain full flux. The inverter cannot supply voltages above 400 V,
and it follows that in this case full flux can only be maintained up to the base speed.
Established practice is for the inverter to be capable of maintaining the ‘V/f ratio’, or
rather the flux, constant up to the base speed (frequently 50 or 60 Hz), but to accept
that at higher frequencies the voltage will be constant at its maximum value. This
means that the flux is maintained constant at speeds up to base speed, but beyond
that the flux reduces inversely with frequency. Needless to say the performance
above base speed is adversely affected, as we will see.

Users are sometimes alarmed to discover that both voltage and frequency
change when a new speed is demanded. Particular concern is expressed when the
voltage is seen to reduce when a lower speed is called for. Surely, it is argued, it can’t
be right to operate say a 400 V induction motor at anything less than 400 V. The
fallacy in this view should now be apparent: the figure of 400 V is simply the correct
voltage for the motor when run directly from the utility supply, at say 50 Hz. If this
full voltage were to be applied when the frequency was reduced to say 25 Hz, the
implication would be that the flux would rise to twice its rated value. This would
greatly overload the magnetic circuit of the machine, giving rise to excessive
saturation of the iron, an enormous magnetizing current, and wholly unacceptable
iron and copper losses. To prevent this from happening, and keep the flux at its
rated value, it is essential to reduce the voltage in proportion to frequency. In the
case above, for example, the correct voltage at 25 Hz would be 200 V.

It is worth stressing here that when considering a motor to be fed from an
inverter there is no longer any special significance about the utility network
frequency, and the motor can be wound for almost any base frequency. For
example, a motor wound for 400 V, 100 Hz could in the above example operate
with constant flux right up to 100 Hz.
3. TORQUE–SPEED CHARACTERISTICS

When the voltage at each frequency is adjusted so that the ratio of voltage to
frequency (V/f ) is kept constant up to base speed, a family of torque–speed curves
as shown in Figure 7.3 is obtained. These curves are typical for a standard induction
motor of several kW output.

As expected, the no-load speeds are directly proportional to the frequency, and if
the frequency is held constant, e.g. at 25 Hz in Figure 7.3, the speed drops only
modestly fromno-load (point a) to full-load (point b). These are therefore good, useful
open-loop characteristics, because the speed is held fairly well from no-load to full-
load. If the application calls for the speed to be held precisely, this can clearly be ach-
ieved by raising the frequency so that the full-load operating point moves to point (c).



Figure 7.3 Torque–speed curves for inverter-fed induction motor with constant V/f
ratio.
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We note also that the pull-out torque and the torque stiffness (i.e. the slope of
the torque–speed curve in the normal operating region) is more or less the same at
all points below base speed, except at low frequencies where the voltage drop over
the stator resistance becomes very significant as the applied voltage is reduced. A
simpleV/f control system would therefore suffer from significantly reduced flux and
hence less torque at low speeds, as indicated in Figure 7.3.

The low-frequency performance can be improved by increasing the V/f ratio at
low frequencies in order to restore full flux, a technique which is referred to as
‘voltage boost’. In modern drive control schemes which calculate flux from a motor
model (see section 8), the voltage is automatically boosted from the linear V/f
characteristic that the approximate theory leads us to expect. A typical set of torque–
speed curves for a drive with the improved low-speed torque characteristics
obtained with voltage boost is shown in Figure 7.4.

The characteristics in Figure 7.4 have an obvious appeal because they indicate
that the motor is capable of producing practically the same maximum torque at all
speeds from zero up to the base (50 Hz) speed. This region of the characteristics is
Figure 7.4 Typical torque–speed curves for inverter-fed induction motor with constant
flux up to base speed (50 Hz) and constant voltage at higher frequencies.
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known as the ‘constant torque’ region, which means that for frequencies up to base
speed, the maximum possible torque which the motor can deliver is independent of
the set speed. Continuous operation at peak torque will not be allowable
because the motor will overheat, so an upper limit will be imposed by the
controller, as discussed shortly. With this imposed limit, operation below base speed
corresponds to the armature-voltage control region of a d.c. drive, as exemplified in
Figure 3.9.

We should note that the availability of high torque at low speeds (especially at
zero speed) means that we can avoid all the ‘starting’ problems associated with fixed-
frequency operation (see Chapter 6). By starting off with a low frequency which is
then gradually raised the slip speed of the rotor is always small, i.e. the rotor operates
in the optimum condition for torque production all the time, thereby avoiding all
the disadvantages of high slip (low torque and high current) that are associated with
utility-frequency/direct-on-line (DOL) starting. This means that not only can the
inverter-fed motor provide rated torque at low speeds, but – perhaps more
importantly – it does so without drawing any more current from the utility supply
than under full-load conditions, which means that we can safely operate from
a weak supply without causing excessive voltage dips. For some essentially fixed-
speed applications, the superior starting ability of the inverter-fed system alone may
justify its cost.

Beyond the base frequency, the flux (‘V/f ratio’) reduces because V remains
constant. The amplitude of the flux wave therefore reduces inversely with the
frequency. Under constant flux operation, the pull-out torque always occurs at the
same absolute value of slip, but in the constant-voltage region the peak torque
reduces inversely with the square of the frequency and the torque–speed curve
becomes less steep, as shown in Figure 7.4.

Although the curves in Figure 7.4 show what torque the motor can produce for
each frequency and speed, they give no indication of whether continuous operation
is possible at each point, yet this matter is of course extremely important from the
user’s viewpoint, and is discussed next.
3.1 Limitations imposed by the inverter – constant power
and constant torque regions

A primary concern in the inverter is to limit the currents to a safe value as far as the
main switching devices and the motor are concerned. The current limit will be
typically set to the rated current of the motor, and the inverter control circuits will
be arranged so that no matter what the user does the output current cannot exceed
this safe (thermal) value, other than for clearly defined overload (e.g. 120% for 60
seconds) for which the motor and inverter will have been specified and rated. (For
some applications involving a large number of starts and stops, the motor and drive
may be specially designed for the specific duty.)
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In modern control schemes (sections 8 and 9) it is possible to have independent
control of the flux- and torque-producing components of the current, and in this
way the current limit imposes an upper limit on the permissible torque. In the
region below base speed, this will normally correspond to the rated torque of the
motor, which is typically about half the pull-out torque, as indicated by the shaded
region in Figure 7.5. Note that this is usually a thermal limit imposed by the motor
design.
Figure 7.5 Constant torque, constant power and high-speed motoring regions.
Above base speed, it is not possible to increase the voltage and so the flux
reduces inversely with the frequency. Since the stator (and therefore rotor) currents
are again thermally limited (as we saw in the constant torque region), the maximum
permissible torque also reduces inversely with the speed, as shown in Figure 7.5.
This region is consequently known as the ‘constant power’ region. There is of
course a close parallel with the d.c. drive here, both systems operating with reduced
or weak field in the constant power region. In the constant power region, the flux is
reduced and so the motor has to operate with higher slips than below base speed to
develop the full (rated) rotor current and correspondingly reduced torque.

The voltage drop over the stator leakage inductance (see Appendix 2) increases
with frequency. At typically twice base speed the extent of this voltage drop reduces
the available voltage to such an extent that it is no longer possible for the motor to
provide constant power operation, as indicated by the cross-hatched area in Figure 7.5.

3.2 Limitations imposed by the motor
The traditional practice in d.c. drives is to use a motor specifically designed for
operation from a thyristor converter. The motor will have a laminated frame, will
probably come complete with a tachogenerator, and – most important of all – will
have been designed for through ventilation and equipped with an auxiliary air
blower. Adequate ventilation is guaranteed at all speeds, and continuous operation
with full torque (i.e. full current) at even the lowest speed is therefore in order.
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By contrast, it is still common for inverter-fed systems to use a standard
industrial induction motor. These motors are usually totally enclosed, with an
external shaft-mounted fan which blows air over the finned outer case (and an
internal stirring fan to circulate air inside the motor to avoid spot heating). They are
designed first and foremost for continuous operation from the fixed frequency
utility supply, and running at base speed.

As we have mentioned earlier, when such a motor is operated at a low
frequency (e.g. 7.5 Hz), the speed is much lower than base speed and the efficiency
of the cooling fan is greatly reduced. At the lower speed the motor will be able to
produce as much torque as at base speed (see Figure 7.4) but in doing so the losses in
both stator and rotor will also be more or less the same as at base speed, so it will
overheat if operated for any length of time.

However, induction motors bearing the name ‘inverter grade’ or similar are
readily available. As well as having reinforced insulation systems (see Chapter 8),
they have been designed to offer a constant torque operating range below rated
speed, typically down to 30% of base speed, without the need for an external
cooling fan. In addition they may be offered with an external cooling fan to allow
operation at constant (rated) torque down to standstill.
3.3 Four-quadrant capability
So far in this chapter it is natural that we have concentrated on motoring in quadrant
1 of the torque–speed plane (see Figure 3.12), because this is where the machine will
spend most of its time running, but it is important to remind ourselves that the
induction motor is equally at home as a generator, a role that it will frequently
perform, even with an ordinary load, when a reduction in speed is called for. We
should also recall that in this part of the chapter we are studying variable-frequency
operation at the fundamental level, so we should bear in mind that in practice details
of the control strategy will vary from drive to drive.

We can see how intermittent generation occurs with the aid of the torque–
speed curves shown in Figure 7.6. These have been extended into quadrant 2, i.e.
the negative-slip region, where the rotor speed is higher than synchronous, and
a braking torque is exerted.

The family of curves indicates that for each set speed (i.e. each frequency) the
speed remains reasonably constant because of the relatively steep torque–slip
characteristic of the cage motor. If the load is increased beyond rated torque, an
internal current limit comes into play to prevent the motor from reaching the
unstable region beyond pull-out. Instead, the frequency and speed are reduced, and
so the system behaves in a similar way to a d.c. drive.

Sudden changes in the speed reference are buffered so that the frequency is
gradually increased or decreased. If the load inertia is low and/or the ramp time
sufficiently long, the acceleration will be accomplished without the motor entering



Figure 7.6 Acceleration and deceleration trajectories in the torque–speed plane.
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the current-limit region. On the other hand, if the inertia is large and/or the ramp
time was very short, the acceleration will take place as discussed below.

Suppose the motor is operating in the steady state with a constant load torque at
point (a), when a new higher speed corresponding to point (d) is demanded. The
frequency is increased, causing the motor torque to rise to point (b), where the
current has reached the allowable limit. The rate of increase of frequency is then
automatically reduced so that the motor accelerates under constant-current condi-
tions to point (c), where the current falls below the limit: the frequency then remains
constant and the trajectory follows the curve from (c) to settle finally at point (d).

A typical deceleration trajectory is shown by the path aefg in Figure 7.6. The
torque is negative for much of the time, the motor operating in quadrant 2 and
regenerating kinetic energy. Because we have assumed that the motor is supplied
from an ideal voltage source, this excess energy will return to the supply automat-
ically. In practice, however, we should note that many drives do not have the
capability to return power to the a.c. supply, and the excess energy therefore has to
be dissipated in a resistor inside the converter. (The resistor is usually connected across
the d.c. link, and controlled by a chopper. When the level of the d.c. link voltage
rises, because of the regenerated energy, the chopper switches the resistor on to
absorb the energy. High inertia loads which are subjected to frequent deceleration
can therefore pose problems of excessive power dissipation in this ‘dump’ resistor.)

To operate as a motor in quadrant 3 all that is required is for the phase sequence
of the supply to be reversed, say from ABC to ACB. Unlike the utility-fed motor,



Figure 7.7 Operating regions in all four quadrants of the torque–speed plane.
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there is no need to swap two of the power leads because the phase sequencing can
be changed easily at the low-power logic level in the inverter. With reverse phase
sequence, a mirror image set of ‘motoring’ characteristics is available, as shown in
Figure 7.7. The shaded regions are as described for Figure 7.5, and the dashed lines
indicate either short-term overload operation (quadrants 1 and 3) or regeneration
during deceleration (quadrants 2 and 4).

Note that unlike the d.c. motor control strategies we examined in Chapter 4,
neither the motor current, nor indeed any representation of torque, plays a role in
the motor control strategy discussed so far (except when the current hits a limit, as
discussed above).
4. INTRODUCTION TO FIELD-ORIENTED CONTROL

We now begin the second part of this chapter, which explores the contemporary
approach to control of the inverter/induction motor combination. Field-oriented
(or vector) control allows the induction motor/inverter combination to outperform
conventional industrial d.c. drives, and its progressive refinement since the 1980s
represents a major landmark in the history of electrical drives. It is therefore
appropriate that its importance is properly reflected in this book, because one of our
aims is to equip readers with sufficient understanding to allow them to converse
intelligently with manufacturers and suppliers.
4.1 Outline of remainder of this chapter
Up to now, we have been able to cover topics without recourse to any very
demanding mathematics, relying instead on physical explanations and diagrams,
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and our aim is to continue this approach. However, anyone who has consulted an
article or textbook on the subject of field-oriented control will quickly become
aware that most treatments involve extensive use of matrices and transform theory,
and that many of the terms used will not be familiar to anyone not already
schooled in the analysis of electrical machines. Fortunately, from our point of
view, it is nevertheless possible to understand the underlying basis of field-
oriented control via a relatively simple graphical approach, but even for this we
have to make use of some ideas (such as flux linkage, and space phasors) that we
have not discussed previously, so these are presented in the remainder of this
section.

In section 5 we take a fresh look at the production of torque in induction
motors, this time with the motor being supplied with controlled currents from
a voltage-source inverter. We begin by taking a physical viewpoint that yields
simple pictures that turn out to be accompanied by surprisingly simple formulae for
torque. More importantly, the subsequent discussion in sections 6 and 7 makes clear
what has to be done to achieve ‘ideal’ dynamic control of torque, something that
was considered impossible until power electronics arrived.

The practical implementation of field-oriented control of torque is explored in
section 8 through a detailed examination of the modus operandi of a typical sen-
sorless control scheme. And finally, we look briefly at direct torque control, an
alternative control strategy, in section 9.

In the remainder of this section we provide an introduction to some of the
graphical and circuit-based techniques that we will need in order to understand
torque control. The aim is to familiarize ourselves with the methodology and
techniques that are used, after which we can sidestep the actual analysis and instead
highlight the lessons that emerge from the torque-modeling exercise.

Readers who are comfortable with the distinction between transient and
steady-state conditions and familiar with space phasors, transformation between
reference frames, and the circuit modeling of electrical machines, may wish to skip
this (inevitably rather long) treatment.
4.2 Transient and steady states in electric circuits
Field-oriented control allows us to obtain (almost) instantaneous (step) changes in
torque on demand, and it does this by jumping directly from one steady-state
condition to another. This simple statement is seldom given the prominence it
deserves, but it is a simple truth, to be recalled whenever there is a danger of being
bamboozled by a surfeit of technospeak.

Given the very poor inherent response of the inductionmotor to sudden changes
in load or utility supply (see, for example, Figure 6.7), it will come as no surprise when
we learn later that this sudden transition between steady states can only be achieved by
precise control of the magnitude, frequency and instantaneous phase of the stator
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currents. As will emerge, the key requirement of a successful sudden transition is that
it must not involve a step change in the stored energy of the system.

As an introduction to the underlying principle of changing from one steady state
to another without any transient, we can look at the behavior of a series resistor
and inductor circuit fed by an ideal voltage source (Figure 7.8). This is much simpler
than the induction motor (it only has one energy storage element – the inductor)
but it demonstrates the key requirement to be satisfied for transient-free switching.
Figure 7.8 Transition between steady states in series R–L circuit.
First, we look at the current when the voltage is a step at t¼ 0 (Figure 7.8(a)). The
steady-state current is simplyV/R, but the current cannot rise instantaneously because
that would require the energy stored in the inductor (½Li2) to be supplied in zero
time, which corresponds to an impulse of infinite power. So in addition to the steady-
state term iss¼V/R, there is a transient term given by itr¼�(V/R)e(�t/s), where the
time-constant, s¼ L/R. The total current is the sum of the steady-state and transient
components, as shown by the lower dotted line in Figure 7.8(a).

Now consider a more relevant situation, where we wish the current to jump
suddenly from a steady state at one frequency (in this case zero amplitude at zero
frequency (i.e. d.c.) for t< 0) to a sinusoidal steady state for t> 0.

Figure 7.8(b) shows what happens if we make the sudden transition in the
applied voltage (from zero d.c.) at a point where the new voltage waveform is zero
but rising, i.e. at t¼ 0. We note that the current does not immediately assume its
steady state, but displays the characteristic decaying transient, lasting for several
cycles before the steady state is reached, with the current finally lagging the voltage
by an angle f. Examination of the steady-state current waveform shows that the
current is negative as the voltage rises through zero, so this particular attempt to



218 Electric Motors and Drives
jump straight into the steady state is clearly doomed from the outset because it
would have required the circuit to anticipate the arrival of the voltage by having
a negative current already in existence!

The fundamental reason for the transient adjustment in Figure 7.8(b) is that we
are seeking an instantaneous increase in the energy stored in the inductor from its
initial value of zero, which is clearly impossible. It turns out that if we want to avoid
the transient, we must make the jump without requiring a change in the stored
energy, which in this example means at the point when the current passes through
zero, as shown in Figure 7.8(c). The voltage that has to be applied therefore starts
abruptly at a value V sin f, as shown, and the current immediately enters its steady
state, with no transient term.

We will see later that the principle of not disturbing the stored energy is the key
requirement for obtaining step changes in torque from an induction motor.
4.3 Space phasor representation of m.m.f. waves
The space phasor (or space vector) provides a shorthand graphical way of repre-
senting sinusoidally distributed spatial quantities such as the m.m.f. and flux waves
that we explored in Chapter 5. It avoids us having to consider individual currents by
focusing on their combined effects, and thus makes things easier to understand.

We begin by taking a fresh look at the rotating stator m.m.f., making the
reasonable assumption that each of the 3-phase windings produces a sinusoidally
distributed m.m.f. with respect to distance around the air-gap, which in turn implies
that the winding itself is sinusoidally distributed (rather than sitting in clearly defined
groups of coils as in the real machine discussed previously). For convenience, we
will consider a 2-pole winding.

We can represent the relative position of the windings in space as shown in
Figure 7.9. In Figure 7.9(a) phases B and C are on open-circuit so that we can focus
on how the m.m.f. of phase A is represented. When the current in phase A is positive
(i.e. current flows into the dotted end), we have chosen to represent its sinusoidal
m.m.f. pattern by a vector along the axis of the winding and pointing away from it
(Figure 7.9(a)), and so when the current is negative the vector points towards the coil
(Figure 7.9(b)). The length of the vector is directly proportional to the instantaneous
value of the current, as indicated by the relative sizes of the two vectors.

In Figure 7.9(c), phase A has its maximum positive current, while phases B and
C both have negative currents of half the maximum value. Because each m.m.f. is
distributed sinusoidally in space, we can find their resultant (R) using the approach
that is probably more familiar in the context of a.c. circuits, i.e. by adding the three
components vectorially. In this particular example, the resultant m.m.f.
(Figure 7.9(d)) is co-phasal with the m.m.f. of phase A, but one and half times larger.

We can now use the approach outlined above to find the resultant m.m.f. when
the windings are supplied with balanced 3-phase currents of equal amplitude but



Figure 7.9 Space phasor representation of m.m.f. waves.

Variable Frequency Operation of Induction Motors 219
displaced in time by one-third of a cycle (i.e. 120�). The axes of the phases are
displaced in space as shown in Figure 7.9, and the three currents are shown as
functions of time in the upper part of Figure 7.10. Four consecutive times are
identified, separated by one-twelfth of a complete cycle, or 30� in angle terms.

The lower part of the diagram represents the m.m.f.s in a space phasor diagram.
At each instant the three individual phase m.m.f.s are shown in magnitude and
position, together with the resultant m.m.f. At time t0, for example, the situation is
the same as in Figure 7.9, with phase A at maximum positive current and phases B
and C having equal negative currents of half the magnitude of that in phase A;
at t1 phase B is zero while phases A and C have equal but opposite currents; and
so on.

The four sketches suggest that the resultant m.m.f. describes an arc of constant
radius, and it can easily be shown analytically that this is true. So although each
phase produces a pulsating m.m.f. along its axis, the overall m.m.f. is constant in
amplitude (with a value equal to 1.5 times the phase peak), and it rotates at
a uniform rate, completing one revolution per cycle if the field is 2-pole (as here),
half a revolution if 4-pole, etc. This is in line with our findings in Chapter 5.

We should note that although we have developed the idea of space phasors by
focusing on steady-state sinusoidal operation, the approach is equally valid for any
set of instantaneous currents, and is therefore applicable under transient conditions,
for example during acceleration when the instantaneous frequency of the currents
may change continuously.



Figure 7.10 Resultant m.m.f. space phasor for balanced 3-phase operation at four
discrete times, each separated by one-twelfth of a cycle (i.e. 30�).
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An alternative way of representing the resultant m.m.f. pattern produced by a set
of balanced 3-phase windings follows naturally from the discussion above. We
imagine a hypothetical single m.m.f. vector that has a constant magnitude but rotates
relative to the stator at the synchronous speed. This turns out to be an exceptionally
useful mental picture when we come to study the behavior of the inverter-fed
induction motor, because the currents are then under our control and we are able to
specify precisely the magnitude, speed and angular position of the stator m.m.f.
vector in order to achieve precise control of torque.
4.4 Transformation of reference frames
In the previous section we saw that the resultant m.m.f. was of constant amplitude
and rotated at a constant angular velocity with respect to a reference frame fixed to
the stator. As far as an observer in the stationary reference frame is concerned, the
same m.m.f. could equally well be produced by a set of sinusoidally distributed
windings fed with constant (d.c.) current and mounted on a structure that rotated at
the same angular velocity as the actual m.m.f. wave. On the other hand, if we were
attached to a reference frame rotating with the m.m.f., the space phasor would
clearly appear to us to be constant.

Transformations between reference frames have long been used to simplify the
analysis of electrical machines, especially under dynamic conditions, but until fast
signal-processing became available that approach was seldom used for live control



Figure 7.11 Transformation from 3-phase stationary axis reference frame to two-axis
(d–q) rotating reference frame.
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purposes. We will see later in this chapter that the method is used in field-oriented
control schemes to transform the stator currents into a rotating reference frame locked
to the rotating rotor flux space phasor, thereby making them amenable for control
purposes.

Transformation is usually accomplished in two stages, as shown in Figure 7.11.
The first stage involves replacing the three windings by two in quadrature, with

balanced sinusoidal currents of the same frequency but having a 90� phase shift. In
this case the ‘fb’ stationary reference frame has phase a aligned with phase U. To
produce the same m.m.f., the two windings need either more turns or more
current, or a combination of both. This is known as the Clarke transformation.

The second stage (the Park transformation) is more radical as the new vari-
ables Id and Iq are in a rotating reference frame, and they remain constant under
steady-state conditions, as shown in Figure 7.11. Again we need to specify the
turns ratio and/or the current scaling. (Strictly speaking there is no need for the
intermediate (2-phase) transformation, because we can transform directly from
3-phase to two-axis, but we have included it because it is often mentioned in the
literature.)

It should be clear that the magnitude of the currents Id and Iq will depend on the
angle l, which is the angle between the two reference frames at a specified instant,
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typically at t¼ 0. As far as we are concerned, it is sufficient to note that there are
well-established formulae relating the input and output variables, both for the
forward transformation (U, V, W to d, q) and for the inverse transformation, so it is
straightforward to construct algorithms to perform the transformations. We should
also note that while we have considered the transformation of sinusoidal currents,
the technique is equally valid for instantaneous values.
4.5 Circuit modeling of the induction motor
Up to now in this book we have developed our understanding by starting with
a physical picture of the interactions between the magnetic field and current-
carrying conductors, but we quickly realized that in the case of the d.c. machine
(and the utility-fed induction motor) there was a lot to be gained by making use of
an ‘equivalent circuit’ model, particularly in terms of performance prediction. In so
doing we were representing all the distributed interactions of the motor by way of
their ultimate effect as manifested at the electrical terminals and the mechanical
‘terminal’, i.e. the output shaft.

As long ago as the early nineteenth century it was known that the a.c. trans-
former could be analyzed as a pair of magnetically linked coils, and it did not take
long to show that all of the important types of a.c. electrical machine can also be
analyzed by regarding them as a set of circuits, the electrical parameters (resistance,
inductance) of which were either measured or calculated. The vital difference
compared with the static transformer is that in the machine, the coils on the rotor
move with respect to those on the stator, thereby causing a variation in the extent of
the magnetic interaction between the rotor and stator. This variation turns out to be
the essential requirement for the machine to produce torque and to be capable of
energy conversion.
4.6 Coupled circuits, induced e.m.f. and flux linkage
By ‘coupled circuits’ we mean two or more circuits, often in the form of multi-turn
coils sharing a magnetic circuit, where the magnetic flux produced by the current in
one coil not only links with its own winding, but also with those of the other coils.
The coupling medium is the magnetic field, and as we will see the electrical effect of
the coupling is manifested when the flux changes.

We know from Faraday’s law that when the magnetic flux (f) linking a coil
changes, an e.m.f. (e) is induced in the coil, given by

e ¼ �N
df
dt
;

i.e. the e.m.f. is proportional to the rate of change of the flux. (The minus sign
indicates that if the induced e.m.f. is allowed to drive a current, the m.m.f. produced
by the current will be in opposition to that which produced the original changing
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flux.) This equation only applies if all the flux links all N turns of the coil, the
situation most commonly approached in transformer windings that share a common
magnetic circuit, and are thus very tightly coupled.

We have seen that windings for induction motors are distributed, and the flux
wave produced by the current in the winding is also distributed around the air-gap.
As a result not all of the flux produced by one winding links with all of its turns, and
we have to perform a summation (integration) of all the ‘turns times flux that links
them’ contributions to find the ‘total effective self flux linkage’, which we denote
by the symbol psi (j). The e.m.f. induced when the self-produced flux linkage
changes in, say, a stator winding (subscript S) is then given by

es ¼ djS

dt

In an induction motor there are three distributed windings on the stator, and either
a cage or threemore distributedwindings on the rotor, and someof the flux produced
by current in any one of the windings will link all of the others.We term this ‘mutual
flux linkage’, and often denote it by a double suffix: for example, the symbol jSR is
the mutual flux linkage between a stator winding and a rotor winding.

In the same way that an e.m.f. is induced in a winding when its self-produced
flux changes, so also are e.m.f.s induced in all other windings that are mutually
coupled to it. For example, if the flux produced by the stator winding changes, the
e.m.f. in the rotor (subscript R) is given by

eR ¼ djSR

dt

4.7 Self and mutual inductance
The self and mutual flux linkages produced by a winding are proportional to the
current in the winding. The ratio of flux linkage to the current that produces it is
therefore a constant, and is defined as the inductance of the winding. The self
inductance (L) is given by

L ¼ Self flux linkage
Current

¼ jS

iS
;

while the mutual inductance (M ) is defined as

MSR ¼ Mutual flux linkage
Current

¼ jSR

iS

The self and mutual inductances therefore depend on the design of the magnetic
circuit and the layout of the windings.

We can now recast the expressions for e.m.f. derived above so that they involve
the rates of change of the currents and the inductances, rather than the fluxes. This is
a very important simplification because it allows us to represent the distributed
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effects of the magnetic coupling in single lumped-parameter electric circuit terms.
The self-induced and mutually induced e.m.f.s are now given by

eS ¼ L
diS
dt
;

and

eR ¼ MSR
diS
dt

4.8 Obtaining torque from a circuit model
We represent the two sets of 3-phase distributed windings of the induction motor
by means of the six fictitious ‘equivalent’ coils shown in Figure 7.12. (We are using
the well-proven fact that a cage rotor behaves in essentially the same way as one
with a wound rotor, as explained in Chapter 5.) The three stator coils remain
stationary, while those on the rotor obviously move when the angle q changes.

Because the air-gap is smooth, and the rotor is assumed to be magnetically
homogeneous, all the self inductances are independent of the rotor position, as are
the mutual inductances between pairs of stator coils and between pairs of rotor coils.
Symmetry also means that the mutuals between any two stator or rotor phases are
the same.

However, it is obvious that the mutual inductance between a stator and a rotor
winding will vary with the position of the rotor: when stator and rotor windings are
aligned, the flux linkage will be maximum, and when they are positioned at right
angles, the flux linkagewill be zero.Withwindings that are distributed so as to produce
sinusoidal flux waves, the mutual inductances vary sinusoidally with the angle q.

To a circuit theory practitioner, it is this variation of mutual inductance with
position that immediately signals that torque production is possible. In fact it is
straightforward (if somewhat intellectually demanding) to show that the torque
Figure 7.12 Coupled-circuit model of 3-phase induction motor.
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produced when the sets of windings in Figure 7.12 carry currents is given by the
rather fearsome-looking expression

T ¼
X

iSiR
dMSR

dq

What this means is that to find the total torque we have to find the summation of
nine terms, each of which represents a contribution to the total torque from one of
the nine stator–rotor pairs. So we need the instantaneous value of each of the
six currents, and the rate of change of inductance with rotor position for each
stator–rotor pair. For example, the term representing the contribution to torque
made by stator coil A interacting with rotor coil B is given by

TSARB ¼ iSAiRB
dMSARB

dq

In practice we can use various expedients to simplify the torque expression, for
example we know that mutual inductance is a reciprocal property, i.e.MAB¼MBA,
and we can exploit symmetry, but the important thing to note here is that it is
a straightforward business to find the torque from the circuit model, provided that
we know the currents and the inductances.
4.9 Finding the rotor currents
The rotor currents are induced, and to find them we have to solve the set of six
equations relating them to the applied stator voltages, using Kirchhoff ’s voltage law.

So, for example, the voltage equation below relating to rotor phase A includes
a term representing the resistive volt-drop, another representing the self-induced
e.m.f. and five others representing the mutual coupling with the other windings.
There are two more rotor equations and three similar ones for the stator windings.

yRA ¼ iRARR þ LRA
diRA

dt
þMRARB

diRB

dt
þMRARC

diRC

dt
þMRASA

diSA
dt

þMRASB
diSB
dt

þMRASC
diSC
dt

In the induction motor the rotor windings are usually short-circuited, so there is no
applied voltage and the left-hand side of each rotor equation is zero.

If we have to solve these six simultaneous differential equations when the stator
terminal voltages are specified (typical of utility-fed constant-frequency conditions),
we have a very challenging task that demands computer assistance, even under
steady-state conditions. However, when the stator currents are specified (as wewill see
is the norm in an inverter-fed motor under vector control), the equations can be
solved muchmore readily. Indeed under steady-state locked rotor conditions we can
employ an armory of techniques such as j notation and phasor diagrams to solve the
equations by hand.
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We have now seen in principle how to predict the torque, and how to solve for
the rotor currents, when the stator currents are specified. So we are now in
a position to see what can be learned from a study of the known outcomes under
two specific conditions.

In the next section, we look at how the torque varies when the stator windings
are fed with a balanced set of 3-phase a.c. currents of constant amplitude but variable
frequency, and the rotor is stationary. Although this is not of practical importance, it
is very illuminating, and it points the way to the second and much more significant
mode of operation, in which the net rotor flux is kept constant at all frequencies;
this is dealt with in section 6.
5. STEADY-STATE TORQUE UNDER CURRENT-FED
CONDITIONS

Historically there was little interest in analysis under current-fed conditions because
we had no means of direct control over the stator currents, but the inverter-fed
drive allows the stator currents to be forced very rapidly to whatever value we want,
regardless of the induced e.m.f.s in the windings. Fortunately, we will see that
knowing the currents from the outset makes quantifying the torque very much
easier, and it also allows us to derive simple quantitative expressions that indicate
how the machine should be controlled to achieve precise torque control, even
under dynamic conditions.

To simplify our mental picture we will begin with the rotor at rest, and we
will assume that we have a wound rotor with balanced 3-phase windings that for
the moment are open-circuited, i.e. that no current can flow in them. With
balanced 3-phase stator currents of amplitude Is we know from the discussion
above that the traveling stator m.m.f. wave can be represented by a single space
phasor that rotates at the synchronous speed, and that in the absence of any
currents in the rotor (and neglecting saturation of the iron) the flux wave will be
in phase with the m.m.f. and proportional to it. This is shown Figure 7.13(a): in
this sketch the rotor and stator are stationary, but all the patterns rotate at
synchronous speed.

On the left of Figure 7.13(a) is a graphical representation of the sinusoidal
distribution of resultant current around the stator at a given instant, and the cor-
responding flux pattern (dashed lines). Note that there is no rotor current. On the
right of Figure 7.13(a) is a phasor that can represent both the stator m.m.f. and what
we will call the resultant mutual flux linkage, both of which are proportional to the
stator current. The expression ‘mutual flux linkage’ in Figure 7.13(a) thus represents
the total effective flux linkages with the rotor due to the stator traveling flux wave.
In circuit terms, this flux linkage is proportional to the mutual inductance between
the stator and rotor windings (M ), and to the stator current (IS), i.e. MIS.



Figure 7.13 Space phasors of m.m.f. and flux linkage under locked-rotor conditions.
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Now we short-circuit the rotor windings, and solve the set of equations for
the rotor currents in the steady state. In view of the symmetry it comes as no
surprise to find that they also form a balanced 3-phase set, at the same frequency as
those of the stator, but displaced in time-phase. The resultant pattern of currents
in the rotor is shown on the left of Figure 7.13(b), together with the flux pattern
(dashed lines) that they would set up if they acted alone. Note that the stator
currents that are responsible for inducing the rotor currents have been deliberately
suppressed in Figure 7.13(b), because we want to highlight the rotor’s reaction
separately.

The m.m.f. due to the rotor currents is represented by the phasor shown on the
right of Figure 7.13(b), and again this can also serve to represent the rotor self flux
linkages (LRIR) attributable to the induced currents. It is clear that the time phase
shift between stator and rotor currents causes a space phase shift between stator and
rotor m.m.f.s, with the rotor m.m.f. broadly tending to oppose the stator m.m.f. If
the rotor had zero resistance, the rotor m.m.f. would directly oppose that of the
stator. The finite rotor resistance displaces the angle, as shown in Figure 7.13(b). We
will see shortly that this phase angle varies widely and is determined by the
frequency.

To find the resultant m.m.f. acting on the rotor we simply add the stator and
rotor m.m.f. vectors, as shown in Figure 7.13(c). It is this m.m.f. that produces the
resultant flux at the rotor, and we can therefore also use it to represent the net rotor
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flux linkage (jR). The flux pattern at the rotor is shown by the solid lines in
Figure 7.13(c, left). (But we should note that the number of flux lines shown in
Figure 7.13(a–c) is not intended to reflect the relative magnitudes of flux densities,
which, if saturation was not present, would be higher in the two upper sketches.)
We should also note that, as expected, the behavior is independent of the rotor
position angle q, because the rotor symmetry means that when viewed from the
stator, the rotor always looks the same overall.

Close examination of Figure 7.13(c) reveals an extremely important fact. The
resultant rotor flux vector (jR) is perpendicular to the rotor current vector. This
means that the rotor current wave (shown on the left of Figure 7.13(c)) is oriented
in the ideal position in space to maximize the torque production, because the largest
current is coincident with the maximum flux density. If we look back to Figures 3.1
and 3.2, we will see that this is exactly how the flux and current are disposed in the
d.c. machine, the N pole facing the positive currents and the S pole opposite the
negative currents.

When we evaluate the torque under these conditions, a very simple analytical
result emerges: the torque turns out to be given by the product of the rotor flux
linkage and the rotor current, i.e.

T ¼ jRIR

The similarity of this expression to the torque expression for a d.c. machine is self-
evident, and further underlines the fundamental unity of machines exploiting the
‘BIl’ mechanism discussed in Chapter 1. We note also that in Figure 7.13(c, right),
one side of the right-angle triangle is jR while the other is proportional to the rotor
current IR. Hence the area of the triangle is proportional to the torque, which
makes it easy to visualize how torque varies with frequency, which we look at
shortly.

(The keen reader may recall that the mental pictures we employed in Chapter 5
were based on the calculation of torque from the product of the air-gap flux wave
and the rotor current wave, and that these were not in phase, except at very low slip
frequency. The much simpler picture which has now been revealed – in which the
flux and current waves are always ideally disposed as far as torque production is
concerned – arises because we have chosen to focus on the resultant rotor flux
linkage, not the air-gap flux: we are discussing the same mechanism as in Chapter 5,
but the new viewpoint has thrown up a much simpler picture of torque
production.)

We will see later that the rotor flux linkage is the central player in the field-
oriented or vector control methods that now dominate in inverter-fed drives. To
make full use of the flux-carrying capacity of the rotor iron, and to achieve step
changes in torque, we will keep the amplitude of jR constant, and we will explore
this shortly. But first we will look at how the torque depends on slip when the
amplitude of the stator current is kept constant.
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5.1 Torque vs slip frequency – constant stator current
An alert reader might question why the title of this section includes reference to slip
frequency, when we have specified so far that the rotor is stationary, in which case
the effective slip is 1 and the frequency induced in the rotor will always be the same
as the stator frequency. The reason for referring to slip frequency is that, as far as the
reaction of the rotor is concerned, the only thing that matters is the relative speed of
the traveling stator field with respect to the rotor.

So if we study the static model with an induced rotor frequency of 2 Hz, the
torque that we predict can represent locked rotor conditions with 2 Hz on the
stator; or the rotor running with a slip of 0.1 with 20 Hz on the stator; or a slip of
0.04 with 50 Hz on the stator; and so on. In short, under current-fed conditions,
our model correctly predicts the rotor behavior, including the torque, when we
supply the stator windings at the slip frequency. (Note that all other aspects of
behavior on the stator side are not represented in this model.)

The variation in the flux linkage triangle with slip frequency, assuming that the
amplitude of the stator current is constant, is shown in Figure 7.14. The locus of the
resultant rotor flux linkage as the slip is varied is shown by the semi-circles. The
right-hand side relates to low values of slip frequency, where the rotor self flux
linkage is much less than the stator mutual flux linkage, so the resultant rotor flux is
not much less than when the slip is zero. In other words, at low slips the presence of
the rotor currents has little effect on the magnitude of the resultant flux, as we saw in
Chapter 5. Low-slip operation is the norm in controlled drives. The left-hand
drawing relates to high values of slip, where the large induced currents in the rotor
lead to a rotor m.m.f. that is almost able to wipe out the stator m.m.f., leaving a very
small resultant flux in the rotor. We will not be concerned with this end of the
diagram in an inverter drive.

There is a simple formula for the angle f, which is given by

tan f ¼ us s (7.1)

where s¼ LR/RR, the rotor time-constant.
We noted earlier that the torque is proportional to the area of the triangle, so

it should be clear that the peak torque is reached when the slip increases from the
Figure 7.14 Locus of rotor flux linkage space phasor as slip frequency varies.
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point T and moves to Tmax. At this point, f¼ p/4 and the slip frequency is given
by uS¼ 1/s¼RR/LR. Under these constant-current conditions, the slip at
which maximum torque occurs is much less than under constant-voltage
conditions, because the rotor self inductance is much larger than the rotor leakage
inductance.
6. TORQUE VS SLIP FREQUENCY – CONSTANT ROTOR
FLUX LINKAGE

As already mentioned, it is clear that to make full use of the flux-carrying capacity of
the rotor iron, we will want to keep the amplitude of the rotor flux jR constant.
Given that the majority of the rotor flux links the stator (see Figure 7.13(c)), keeping
the rotor flux constant also means that for most operating conditions, the stator flux
is also more or less constant, as we assumed in Chapter 5.

In this section we explore how steady-state torque varies with slip when the
rotor flux is maintained constant: this is illuminating, but much more importantly it
prepares us for the final section, which deals with how we are able to achieve precise
control of torque even under dynamic conditions.

We can see from Figure 7.14 that to keep the rotor flux constant we will have to
increase the stator current with slip. This is illustrated graphically in Figure 7.15, in
which the rotor flux linkage jR is shown vertically to make it easier to see that it
remains constant. In the left-hand diagram, the slip is very small, so the induced
rotor current and the torque (which is proportional to the area of the triangle) are
both small. The rotor flux is more or less in phase with the applied stator flux
linkage because the ‘opposing’ influence of the rotor m.m.f. is small.

In the middle and right-hand diagrams the slip is progressively higher, so the
induced rotor current is larger and the stator current has to increase in order to keep
the rotor flux constant.

There is a simple analytical relationship that gives the required value of stator
current as a function of slip, but of more interest is the relationship between the
Figure 7.15 Constant rotor flux linkage space phasors at low, medium and high values
of slip, showing variation of stator current required to keep rotor flux constant.



Variable Frequency Operation of Induction Motors 231
induced rotor current and the slip. From Figure 7.15, we can see that the tangent of
the angle f is given by

tan f ¼ LRIR

jR

Combining this with equation (7.1) we find that the rotor current is given by

IR ¼
�
jR

RR

�
uslip (7.2)

The bracketed term is constant; therefore the rotor current is directly propor-
tional to the slip. Hence the horizontal sides of the triangles in Figure 7.15 are
proportional to slip, and since the vertical side is constant, the area of each
triangle (and torque) is also proportional to slip. To emphasize this simple rela-
tionship, the right-hand diagram in Figure 7.15 has been drawn to correspond to
a slip three times higher than that of the middle one, so the horizontal side of the
right-hand sketch is three times as long, and the area of the triangle (and torque)
is trebled.

We note that when the rotor flux is maintained constant, the torque–speed
curve becomes identical to that of the d.c. motor. In this respect the behavior
differs markedly from that under both constant-voltage and constant-current
conditions, where a peak or pull-out torque is reached at some value of slip.
With constant rotor flux there is no theoretical limit to the torque, but in
practice the maximum will be governed by thermal limits on the rotor and stator
currents.

For those who prefer the physical viewpoint it is worth noting that the results
discussed in this section could have been deduced directly from Figure 7.13(c),
which indicates that the resultant rotor flux and rotor current waves are always
aligned (i.e. the peak flux density coincides with the peak current density) so that
if the flux is held constant, the torque is proportional to the rotor current. The
rotor current is proportional to the motionally induced e.m.f., which in
turn depends on the velocity of the flux wave relative to the rotor, i.e. the slip
speed.
6.1 Flux and torque components of stator current
If we resolve the stator flux-linkage phasor MIs into its components parallel and
perpendicular to the rotor flux, the significance of the terms ‘flux component’ and
‘torque component’ of the stator current becomes obvious (Figure 7.16).

We can view the ‘flux’ component as being responsible for setting up the rotor
flux, and this is the component that we must keep constant in order to maintain the
working flux of the machine at a constant value for all slips. It is clearly analogous to
the field current that sets up the flux in a d.c. motor.



Figure 7.16 Flux and torque components of stator current.
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The other (‘torque’) component (which is proportional to the rotor current) can
be thought of as being responsible for nullifying the opposing effect of the rotor
current that results when the rotor conductors are ‘cut’ by the traveling flux wave.
This current component is therefore seen as the counterpart of the armature or
work current in the d.c. motor.

Looking back to the left-hand diagram in Figure 7.15, we see that at small slips
(light load) the stator current is small and practically in phase with the flux; this is
what we referred to as the magnetizing current in previous chapters. At higher slips,
the stator current is larger, reflecting that it now has a torque or ‘work’ component
in addition to its magnetizing component, which again accords with our findings in
previous chapters.
6.2 Establishing the flux
In the previous discussion we assumed that steady-state conditions prevailed, with
the rotor flux wave remaining of constant magnitude and rotating relative to the
rotor at the slip speed. We now look at how the flux wave was established, and we
will see that the reaction of the rotor is very different from its subsequent steady-
state behavior.

We start with the rotor at rest, no current in any of the windings, and hence no
flux. With reference to Figure 7.9, we suppose that we supply a step (d.c.) current
into phase A, which will split with half exiting from each of phases B and C, and
producing a stationary sinusoidally distributed m.m.f. that, ultimately, will produce
the flux pattern labeled ‘final state’ in Figure 7.17.

But of course the rotor windings are short-circuited, with no flux through
them, and closed electrical circuits behave like many things in the physical world in
that they react to change by opposing it. In this context, if the flux linking a winding
changes, Faraday’s law tells us there will be an induced e.m.f. The direction of the
e.m.f. is such that if it acts in a closed circuit and produces a current, the m.m.f.
produced by that current will be in opposition to the ‘incoming’ m.m.f./flux.
(Formally this is expressed by Lenz’s law, and sometimes by the use of a negative
sign preceding the e.m.f. equation that quantifies Faraday’s law.)



Figure 7.17 Diagrams illustrating the build-up of rotor flux when a step of stator m.m.f.
occurs.
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So when the stator m.m.f. phasor suddenly comes into existence, the immediate
reaction of the rotor is the production of a negative stationary rotor m.m.f. pattern,
i.e. in direct opposition to the stator m.m.f.: this is labeled ‘initial instant’ in
Figure 7.17. Instantaneously, the magnitude of the rotor m.m.f. is such as to keep
the rotor flux linkage at zero, as it was previously.

However, because of the rotor resistance, the rotor current needs a voltage to
sustain it, and the voltage can only be induced if the flux changes. So the rotor flux
begins to increase, rising rapidly at first (high e.m.f.) then with ever-decreasing
gradient leading to lower current and lower rotor m.m.f. The response is a first-
order one, governed by the rotor time-constant, so after one time-constant (middle
sketch) the flux linking the rotor reaches about 63% of its final value, while the rotor
current has fallen to 37% of its initial value. Finally, the rotor’s struggle to prevent
the flux changing comes to an end and the rotor flux linkage reaches a steady value
determined by the stator current. If the resultant rotor flux linkage is the target value
for steady-state running (jR), the corresponding stator current is what we previ-
ously referred to as the ‘flux component’.

The physical reason why it takes time to build the flux is that energy is stored in
a magnetic field, so we cannot suddenly produce a field because that would require
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an impulse of infinite power. If we want to build up the flux more rapidly, we can
put in a bigger step of stator current at first, so that the flux heads for a higher final
value than we really need, and then reduce the current when we get close to the
flux we are seeking.

We began this section with d.c. current in the stator, which in effect corre-
sponds to zero slip frequency, all the field patterns being stationary in space. Because
there is no relative motion involved, there is no motional e.m.f. and hence no
torque. The ‘torque component’ only comes into play when there is relative
motion between the rotor and the rotor flux wave, i.e. when there is slip. Obvi-
ously, to cause rotation the frequency must be increased, and as we have seen in the
previous section the stator current then has to be adjusted with slip and torque to
keep the rotor flux linkage constant.

Finally, it is worth revisiting Figure 7.16 briefly to reconcile what we have
discussed in this section with our picture of steady-state operation, where the rotor
currents are at slip frequency. On the left we have the fictitious ‘flux component’ of
stator current, which remains constant in magnitude and aligned with the rotor flux
linkage, jR, along the so-called direct axis. When we first established this flux, the
rotor reacted as we have discussed above, but after a few time-constants the flux
settled to a constant value along the direct axis in the direction of the flux
component of the stator m.m.f. This is why the arrows on jR point in the same
direction as the stator flux producing component.

However, we note from Figure 7.16 that the rotor flux linkage phasor (LRIR) is
always equal in magnitude to the torque component of the stator mutual flux
linkage phasor, but, as shown by the arrows, it is in the opposite direction. There is
therefore no resultant m.m.f. or tendency for flux to develop along this, the so-
called quadrature axis. This is what we would expect in the light of the previous
discussion, where we saw that the reaction of mutually coupled windings to any
suggestion of change is for currents to spring up so as to oppose the change. In the
literature when, as here, the ‘torque’ current does not affect the flux, the axes are
said to be ‘decoupled’.
7. DYNAMIC TORQUE CONTROL

If we want to obtain a step increase in torque, we have to change the rotor flux or
the rotor current instantaneously, so as to jump instantaneously from one steady-
state operating condition to another. We have seen above that because a magnetic
field has stored energy associated with it, it is not possible to change the rotor flux
linkage instantaneously. In the case of the induction motor, any change in the rotor
flux is governed by the rotor time-constant, which will be as much as 0.25 seconds
for even a modest motor of a few kW rating, and much longer for large motors.
This is not acceptable when we are seeking instantaneous changes in torque.
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The alternative is to keep the flux constant, and make the rotor current change as
quickly as possible.

In the previous section, our aim was to grow the rotor flux, which, because of its
stored energy, took a while to reach the steady state. However, if we keep the rotor
flux linkage constant (by ensuring that the flux component of the stator current is
constant and aligned with the flux) we can cause sudden changes to the motionally
induced rotor current by making sudden changes in the torque component of the
stator current.

We achieve sudden step changes in the stator currents by means of a fast-acting
closed-loop current controller. Fortunately, under transient conditions the effective
inductance looking in at the stator is quite small (it is equal to the leakage induc-
tance), so it is possible to obtain very rapid changes in the stator currents by applying
high, short-duration impulsive voltages to the stator windings. In this respect the
stator current controller closely resembles the armature current controller used in
the d.c. drive.

When a step change in torque is required the magnitude, frequency, and phase
of the stator currents are changed (almost) instantaneously in such a way that the
rotor current jumps suddenly from one steady state to another. But in this transition
it is only the torque component of stator current that is changed, leaving the flux
component aligned with the rotor flux. There is therefore no change in the
magnitude of the rotor flux wave and no change in the stored energy in the field, so
the change can be accomplished almost instantaneously.

We can picture what happens by asking what we would see if we were able to
observe the stator m.m.f. wave at the instant that a step increase in torque was
demanded. For the sake of simplicity, we will assume that the rotor speed remains
constant, and consider an increase in torque by a factor of three (as between the
middle and right-hand sketches in Figure 7.15), in which case we would find that:
• the stator m.m.f. wave suddenly increases its amplitude;
• it suddenly accelerates to a new synchronous speed, so the slip increases by

a factor of three;
• it jumps forward to retain its correct relative phase with respect to the rotor

flux; i.e. the angle between the stator m.m.f. and the rotor flux increases from
f2 to f3.

Thereafter the stator m.m.f. retains its new amplitude, and rotates at its new speed.
The rotor current experiences a step change from a steady state at its initial slip

frequency to a new steady state with three times the amplitude and frequency, and
there is a step increase in torque by a factor of three, as shown in Figure 7.18(a). The
new current is maintained by the new (higher) stator currents and slip frequency.

We should note particularly that it is the jump in the angular position (i.e. space
phase angle) that accompanies the step changes in magnitude and frequency of the
stator m.m.f. phasor that allows the very rapid and transient-free control of torque.
Given that the definition of a vector quantity is one which has magnitude and



Figure 7.18 Step changes in rotor current. (a) Transient-free transition with correct
changes to magnitude, frequency and instantaneous position of stator m.m.f. wave (i.e.
vector control). (b) Same changes to magnitude and frequency, but not phase.
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direction, and that the angular position of the phasor defines the direction in which
it is pointing, it is clear why this technique gained the name ‘vector control’.2

To underline the importance of the sudden change in phase of the stator current
(i.e. the sudden jump in angular position of the stator m.m.f. in achieving a step of
torque), Figure 7.18(b) shows what happens typically if only the magnitude and
frequency, but not the position, are suddenly changed. The steady-state conditions
are ultimately reached, but only after an undesirable transient governed by the
(long) rotor time-constant, which may persist for several cycles at the slip frequency.
The fundamental reason for the transient is that if the magnitude of the stator
current is suddenly increased without a change of position, the flux and torque
components both increase proportionately. The change in the flux component
portends a change in the rotor flux (and associated stored energy), which in turn is
resisted by induced rotor currents until they decay and the steady state is reached.
7.1 Summary
This section has described the underlying principles by which very rapid and precise
torque control can be achieved from an induction motor, but we should remember
that until sophisticated power-electronic control became possible the approach
outlined here was only of academic interest. The fact that the modern inverter-fed
drive is able to implement torque control and achieve such outstandingly impressive
2 The term vector control has sometimes been misused to refer to drives that do not include field
orientation. However, the term is so ubiquitous that we cannot avoid it, so when we refer to ‘vector
control’ we mean a proper field-oriented system.
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performance from a motor whose inherent transient behavior is poor, represents
a major milestone in the already impressive history of the induction motor. The way
in which such drives achieve field-oriented control is discussed next.
8. IMPLEMENTATION OF FIELD-ORIENTED CONTROL

An essential requirement if we are to unravel the workings of the overall scheme for
field-oriented control is an understanding of the pulse-width modulation (PWM)
vector modulator/inverter combination that is a feature of all such schemes, so this is
covered first.
8.1 PWM controller/vector modulator
In the inverters we have looked at so far (see section 4 of Chapter 2) we have
supposed that the periodic switching required to approximate a sinusoidal output
was provided from a master oscillator. The frequency of the oscillator determined
the frequency of the a.c. voltage applied to the motor, and the amplitude was
controlled separately. In terms of space phasors this allows control of the amplitude
and frequency, but not the instantaneous angular position of the voltage and current
phasors. As we have seen, it is the additional ability to make instantaneous changes
to the angular position of the output phasor that is the key to dynamic torque control,
and this is the key feature provided by the ‘vector modulator’.

We now explore what the inverter can produce in terms of its output voltage
phasor. We recall that there are six devices (switches) in three legs (see Figure 2.17),
and to avoid a short-circuit both switches in one leg must not be turned on at the
same time. If we make the further restriction that each phase winding must at all
times be connected to one or other of the d.c. link terminals, there are only eight
possible combinations, as shown in Figure 7.19.

The six switching combinations labeled 1–6 each produce an output voltage
phasor of equal amplitude but displaced in phase by 60� as shown in the lower part
of each diagram, while the final two combinations have all three terminals joined
together so the voltage is zero. The six unit vectors are shown with their correct
relative phase, but rotated so as to bring U6 horizontal, in Figure 7.20.

Having only six states of the voltage phasor at our disposal is clearly not
satisfactory, because we need to exert precise control over the magnitude and
position of the voltage phasor at any instant, so this is where the ‘time modu-
lation’ aspect comes into play. For example, if we switch rapidly between states
U1 and U6, spending the same amount of time with each, we will effectively
have synthesized a voltage phasor lying half way between them, and of magni-
tude U1 cos 30� (or 86.7% of U1), as shown by the vector U(x) in the upper-
right part of Figure 7.20. If we spend a higher proportion of the time on U1 and
the remainder on U2, we could produce the vector U(y). As long as we spend



Figure 7.19 Voltage phasors for all acceptable combinations of switching for a 3-phase
inverter.
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the whole of the sample time on either U1 or U6, we will end up somewhere
along the line joining U1 to U6.

We have used the terms ‘switch rapidly’ and ‘the time’ without specifying what
they mean. In practice, we would expect the modulating frequency to be perhaps
a few kHz up to the low tens of kHz, so ‘the time’ means one cycle at this
frequency, say 100 microseconds at 10 kHz. So for as long as we wished the voltage
phasor to remain at U(x), we would spend 50 ms of each sample period alternately
connected to U1 and U6.

Recalling that ideally we want to be able to choose both magnitude and
position it is clearly not satisfactory to be constrained to the outer edges of the
hexagon. So now we bring the zero vector into play. For example, suppose we wish
the voltage phasor to be U(z), as in the lower sketch. This is composed of (0.5)U5



Figure 7.20 Synthesis of intermediate voltage phasors in vector modulator.
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plus (0.3)U6. Hence in each modulating cycle of 100 ms, we will spend times of
50 ms on U5, 30 ms on U6 and 20 ms with one of the zero states.

The precise way in which these periods are divided within one cycle of the
modulating frequency is a matter of important detail in relation to the distribution and
minimization of losses between the six switching devices, but need not concern us
here. Suffice it to say that it is a straightforward matter to arrange for digital software/
hardware that has input signals representing the magnitude and instantaneous position
of the output voltage phasor, and which selects and modulates the six switches
appropriately, to create the desired output until told to move to a new location.

When we introduced the idea of space phasors earlier in this chapter, we saw
that if we begin with balanced 3-phase sinusoidal voltages, the voltage phasor is of
constant length and rotates at a uniform rate. Looking at it the other way round, it
should be clear that if we arrange for the output of the inverter to be a voltage
phasor of constant length, rotating at a constant rate, then the corresponding phase
voltages must form a balanced sinusoidal set, which is what we want for steady-state
running.

We conclude that in the steady state, the magnitude of the input signal to the
vector modulator would have a constant amplitude and its angle would increase at
a linear rate corresponding to the desired angular velocity of the output. Clearly in
order to avoid having to deal with ever-increasing angles, the input signal to the
modulator will reset each time a full cycle of 360� is reached, as shown in Figure 7.21.

Away from the steady-state condition, for example during acceleration, we
should recall that to preserve the linear relation between torque and the stator
current component (IT), the flux component of the stator current phasor (IF) must



Figure 7.21 Angle reference to vector modulator corresponding to constant frequency
operation of inverter. Note that the angle resets to zero at the end of each cycle.
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remain aligned with the rotor flux. As we will see in the next section, this is ach-
ieved by deriving the angle input to the vector modulator directly from the absolute
angular position of the rotor flux.
8.2 Torque control scheme
A simplified block diagram of a typical field-oriented torque control system is
shown in Figure 7.22.

The first and most important fact to bear in mind in the discussion that follows is
that Figure 7.22 represents a torque control scheme, and that for applications that
require speed control, it will form the ‘inner loop’ of a closed-loop speed control
scheme. The torque and flux inputs will therefore be outputs from the speed
controller, as indicated in Figure 7.23.

Returning to Figure 7.22 it has to be acknowledged that it looks rather
daunting, and getting to grips with it is not for the faint-hearted. However, if we
examine it a bit at a time, it should be possible to grasp the essential features of its
Figure 7.22 Simplified block diagram of a typical field-oriented torque control system.



Figure 7.23 Schematic diagram of closed-loop speed control system.
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operation. To simplify matters, we will focus on steady-state conditions, despite the
fact that the real merit of the system lies in its ability to provide precise torque
control even under transient conditions.

Taking the broad overview first, we can see that there are similarities with the
d.c. drive with its inner current (torque) control loop (see Chapter 4), notably the
stator current feedback and the use of proportional and integral (PI) controllers to
control the torque and flux components of the stator current. It would be good if
we could measure the flux and torque components directly, but of course the
current components do not have separate existences: they are merely components
of the stator current, which is what we can measure. The motor has three phases,
but because we are assuming that there is no neutral connection, it suffices to
measure only two of the line currents (because the sum of the three is zero). The
information from these two currents allows us to keep track of the angular position
of the stator current phasor with respect to the stationary reference frame (qS) as
shown in Figure 7.24.

However, the stator current feedback signals are alternating at the frequency
supplied by the inverter, and the corresponding stator space phasor is rotating at the
Figure 7.24 Stator current and rotor flux reference angles.
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supply frequency with respect to a stationary reference frame. Before the flux and
torque components of these signals (IF and IT) can be identified (and subsequently
fed back to the PI controllers) they must first be transformed (see section 4) into
a reference frame that rotates with the rotor flux. As explained previously, the rotor
flux angle qRef is therefore an essential input to the transformation algorithm, as
shown in Figure 7.22.

The broken line in the middle of Figure 7.22 separates quantities defined in the
stationary reference frame (on the right) from those in the rotating reference frame
(on the left). In the steady state, all those on the left are d.c., while all those on the
right are time-varying.

The reader might wonder why, when we follow the signal path of the
current control loops, beginning on the right with the phase current transducers,
there is no matching ‘inverse transform’ to get us back from the rotating
reference frame on the left to the stationary reference frame on the right. The
answer lies in the nature of the input signal to the PWM/vector modulator and
inverter, which we discussed above. Let us suppose that the motor is running in
the steady state, so that the output voltage phasor rotates at a constant rate with
angular frequency u. Under these conditions the rotor flux phasor also rotates
with constant angular velocity u, so the angle of the flux vector with respect to
the stationary reference frame (qRef) increases linearly with time. Also, in the
steady state, the output from the PI controllers is constant, so the angle qV
(Figure 7.22) is constant. Hence the input angle to the modulator (qm in
Figure 7.22), which is the sum of qRef and qV, is also a ramp in time, and this is
what provides the rotation of the output voltage phasor. In effect, the system is
self-sustaining: the primary time-varying input angle to the modulator comes
from the flux position signal (which is already in the stationary reference frame),
and the PI controller provides the required magnitude signal (jVSj) and the
additional angle (qV).

Turning now to the action of the PI controllers, we see from Figure 7.22 that
the outputs are voltage commands in response to the differences between the
feedback (actual) values of the transformed currents and their demanded values. The
flux demand will usually be constant up to base speed, while the torque demand will
usually be the output from the speed or position controller, as shown in Figure 7.23.
The proportional term gives an immediate response to an error, while the integral
term ensures that the steady-state error is zero. The outputs from the two PI
controllers (which are in the form of quadrature voltage demands, VF and VT) are
then converted from rectangular to polar form, to produce amplitude and phase
signals, jVSj and qV, where

jVSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
F þ V 2

T

q
; and qV ¼ tan�1 VT

VF
;

as shown in Figure 7.25.



Figure 7.25 Derivation of voltage phasor from flux and torque components.
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The amplitude term specifies the magnitude of the output voltage phasor (and
thus the three phase voltages applied to the motor), with any variation of the d.c.
link voltage (Vdc) being compensated in the PWM controller. The phase angle (qV)
represents the desired angle between the stator voltage phasor and the rotor flux
phasor, both of which are measured in the stationary reference frame. The angle of
the rotor flux phasor is qRef, so qV is added at the input to the vector modulator to
yield the stator voltage phasor angle qm, as shown in Figure 7.22.

We can usefully conclude our look at the steady state by adding the stator
voltage phasor to Figure 7.24 to produce Figure 7.26, to provide reassurance that, in
the steady state, the rather different approach we have taken in this section is
consistent with the classical approach taken earlier.
Figure 7.26 Time phasor diagram showing stator voltage and current under steady-
state conditions.
8.3 Transient operation
We concluded earlier that for the motor torque to be directly proportional to the
torque component of stator current, it is necessary to keep the magnitude of the
rotor flux constant and to ensure that the flux component of stator current is aligned
with the rotor flux. This is achieved automatically because the principal angle input
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to the vector modulator comes directly from the rotor flux angle (qRef), as shown in
Figure 7.22. So during acceleration, for example, the instantaneous angular velocity
of the rotor flux wave will remain in step with that of the stator current phasor, so
that there is no possibility of the two waves falling out of synchronism with one
another.

In section 7 we discussed a specific example of how to obtain a step change in
torque by making near-instantaneous changes to the magnitude, speed and position
of the stator m.m.f. wave, and we are now in a position to see how this particular
strategy is effected using the control scheme shown in Figure 7.22.

A step demand for torque causes a step increase in jVSj and qV at the output of
the rectangular to polar converter in order to effect a very rapid increase in the
magnitude and instantaneous position of the stator current phasor. At the same
time, the algorithm that calculates the slip velocity of the flux wave (see later,
equation (7.3)) yields a step increase because of the sudden increase in the torque
component of stator current. The principal angular input to the vector modulator
(the flux angle (qRef)) therefore changes gradient abruptly, as shown in
Figure 7.27.
Figure 7.27 Flux angle reference showing response to a sudden step demand for
increased torque.
Recalling that the steady-state stator frequency is governed by the angular
velocity of the flux (i.e. dqRef/dt), this lines up with our expectation that (assuming
the rotor velocity is constant) the stator frequency will increase in order to increase
the slip and provide the new higher torque.
8.4 Acceleration from rest
Measured results showing how the real and transformed currents behave during
acceleration from rest to base speed, are shown in Figure 7.28. These relate to
a motor whose rotor time-constant is approximately 0.1 s, and cover a time of 0.5 s.

The upper diagram shows the demanded values for the transformed flux and
torque components of stator current; the middle diagram shows the measured
(actual) flux and torque components; and the lower shows the three phase
currents.



Figure 7.28 Experimental results showing build-up of flux followed by sudden demand
for step increase in torque until motor reaches its target speed. (Courtesy of Emerson –
Control Techniques)
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At t¼ 0, the flux demand signal is set to its highest possible level of 30 A in
order to raise the flux from zero as quickly as possible to its target value (10 A). Note
how the actual transformed flux component of stator current (IT) follows the demand
signal very rapidly, with only slight overshoot. The signal IT is the transformed
version of the phase winding currents, so the fact that IT is on target is of course
indicative that the phase currents are established rapidly and heldwhile the flux builds
up, as we can see in the lower figure. During this period phase U carries a positive
current of 30 A while phases V and W each carry a negative current of 15 A.

After about one time-constant the demand is reduced to 10 A, and thereafter
held constant. This ‘rapid forcing’ ensures that by 0.2 s, the rotor flux has been fully
established.

At 0.2 s, a torque producing demand is applied to accelerate the motor, and
maintained until 0.4 s, when the torque producing reference is reduced to zero, and
the motor stops accelerating.

We note the almost immediate and transient-free transition of the 3-phase
currents from their initial steady (d.c.) values immediately prior to 0.2 s, into constant
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amplitude, ‘smoothly increasing frequency’ a.c. currents over the next 0.2 s. And
then there is a similarly near-perfect transition to reduced amplitude steady-state
conditions (at about 40 Hz) after 0.4 s. In the steady state, the torque component is
negligible because the motor is unloaded, and the stator current consists only of the
flux component, which traditionally would be referred to as the magnetizing
current.

Younger readers will doubtless not require convincing of the validity of these
remarkable results, but they might find it salutary to know that until the 1970s it was
widely believed that such performance would never be possible.

To conclude this section we can draw a further parallel between the field-
oriented induction motor and the d.c. motor. We see from Figure 7.28 that as the
motor accelerates, the frequency of the stator currents increases with the speed. If
we stationed ourselves on the rotor of a d.c. motor as it accelerated, the rate at which
the current in each rotor coil reversed as it was commutated would also increase in
proportion to the speed, though of course we are not aware of it when we are in the
stationary reference frame.
8.5 Deriving the rotor flux angle
Bynow, the key role playedby the rotorflux angle should have become clear, sofinally
we look at how it is obtained. It is not practical or economic to fit a flux sensor to the
motor, so industrial control schemes invariably estimate the position of the flux.

We will first establish an expression for absolute rotor flux angle (qRef) in the
stationary reference frame in terms of quantities that can either be measured or
estimated. Readers who find the derivation indigestible need not worry as it is the
conclusions that are important, not the analytical detail.

If we let the angle of the rotor body with respect to the stationary reference
frame be q, then the instantaneous angular velocities of the rotor flux wave and the
rotor itself are given by

uflux ¼ dqRef

dt
urotor ¼ dq

dt

The rotor motional e.m.f. is directly proportional to the rotor flux linkage and the
slip velocity, i.e.

VR ¼ jR
�
uflux � urotor

�
;

and the rotor current is therefore given by

IR ¼ jR
�
uflux � urotor

�
RR
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The corresponding component of stator current is given (see Figure 7.16) by
IST ¼ LR

M
IR

Combining these equations and rearranging gives

dqRef

dt
¼ MRR

jRLR
IST þ urotor ¼

�
M

sjR

�
IST þ urotor (7.3)

where s is the rotor time-constant. Hence to find the rotor flux angle at time t we
must integrate the expression above.

The mutual inductance M is a constant, and although the time-constant will
vary because the rotor resistance varies with temperature, it will change relatively
slowly, so we can treat it as constant, in which case the rotor flux angle is given by

qRef ¼
Z t

0

urotordt þM

s

Z t

0

IST

jR
dt ¼ qþM

s

Z t

0

IST

jR
dt

Note that because of the symmetry of the rotor, we only need the time-varying
element of the rotor body angle (q), not the absolute position, so the constant of
integration is not required. (In contrast, for vector control of permanent magnet
motors, the absolute position is important, because the rotor has saliency.)

The various methods that are used to keep track of the flux angle are what
differentiate the various practical and commercial implementations of field-oriented
control, as we will now see.

If we have a shaft encoder we can measure the rotor position (q), or if we have
a measured speed signal, we can derive q by direct integration. This approach
involves the fewest estimations, and therefore will normally offer superior perfor-
mance, especially at low speeds, but is more costly because it requires extra trans-
ducers. We will refer to systems that use shaft feedback as ‘closed-loop’, but in the
literature they may be also referred to as ‘direct vector control’. In common with all
schemes, the second term has to be estimated.

Many different methods of estimating the instantaneous parameter values are
employed, but all employ a digital simulation or mathematical model of the motor/
inverter system. The model runs in real time and is subjected to the same inputs as
the actual motor, the model then being continuously fine-tuned so that the pre-
dicted and actual outputs match. Modern drives measure the circuit parameters
automatically at the commissioning stage, and can even refine them on a near-
continual basis to capture parameter variations.

The majority of vector control schemes eliminate the need for measurement of
rotor position, and instead the rotor position term in equation (7.3) is also estimated
from a motor model, based on the known motor voltage and currents. Rather
confusingly, in order to differentiate them from schemes that do have shaft
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transducers, these systems are known as ‘open-loop’ or ‘indirect’ vector control.
The term ‘open loop’ is a misleading one because at its heart is the closed-loop
torque control shown in Figure 7.22, but it is widely used: what it really means is
‘no shaft feedback’.

The main problems of the open-loop approach occur at low speeds where
motor voltages become very low and measurement noise can render the algorithms
unreliable. Techniques such as high-frequency injection of diagnostic signals exist,
but are yet to find acceptance in the market on standard motors. Open-loop
inverter-fed induction motors are usually unsuitable for continuous operation at
frequencies below 0.75 Hz, and struggle to produce full torque in this region.

An additional difficulty is that the significant variation of rotor resistance with
temperature is reflected in the value of the all-important rotor time-constant s. Any
difference between the real rotor time constant and the value used by the model
causes an error in the calculation of the flux position and so the reference frame
becomes misaligned. If this happens, the flux and torque control are no longer
completely decoupled, which results in suboptimum performance and possible
instability. To avoid this, routines are included in the drive to provide ongoing
estimates of the rotor time constant.
9. DIRECT TORQUE CONTROL

Direct torque control is an alternative high-performance strategy for vector/field
orientation, and warrants a brief discussion to conclude our look at contemporary
schemes. Developed from work first published in 1985 it theoretically provides the
fastest possible torque response by employing a ‘bang-bang’ approach to maintain
flux and torque within defined hysteresis bands. Like field-oriented control, it only
became practicable with the emergence of relatively cheap and powerful digital
signal processing.

Direct torque control avoids coordinate transformations because all the control
actions take place in the stator reference frame. In addition there are no PI
controllers, and a switching table determines the switching of devices in the
inverter in place of the PWM approach favored for field-oriented control. These
apparent advantages are offset by the need for a higher sampling rate (up to 40 kHz
as compared with 6–15 kHz) leading to higher switching loss in the inverter;
a more complex motor model; and inferior torque ripple. Because a hysteresis
method is used the inverter has a continuously variable switching frequency which
may be seen as an advantage in spreading the spectrum of acoustic noise from the
motor.

We saw in the previous sections that in field-oriented control, the torque was
obtained from the product of the rotor flux and the torque component of stator
current. But there are many other ways in which the torque can be derived, for
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example in terms of the product of the rotor and stator fluxes and the sine of the
angle between, or the stator flux and current and the sine of the angle between
them. The latter is the approach discussed in the next section, but first a word about
hysteresis control.

A good example of hysteresis control is discussed later in this book, in relation to
‘chopper drives’ for stepping motors in Chapter 9. Another more familiar example is
the control of temperature in a domestic oven. Both are characterized by a simple
approach in which full corrective action is applied whenever the quantity to be
controlled falls below a set threshold, and when the target is reached, the power is
switched off until the controlled quantity again drops below the threshold. The
frequency of the switching depends on the time-constant of the process and the
width of the hysteresis band: the narrower the band and the shorter the time-
constant, the higher the switching frequency.

In the domestic oven, for example, the ‘on’ and ‘off’ temperatures can be a few
degrees apart because the cooking process is not that critical and the time-constant
is many minutes. As a result the switching on and off is not so frequent as to be
irritating and wear out the relay contacts. If the hysteresis band were to be nar-
rowed to a fraction of a degree to get tighter control of the cooking temperature,
the price to be paid would be incessant clicking on and off, and shortened life of the
relay.

9.1 Outline of operation
The block diagram of a typical direct torque control scheme is shown in
Figure 7.29. There are several similarities with the scheme shown in Figure 7.22,
notably the inverter, the phase current feedback, and the separate flux and torque
demands, which may be generated by the speed controller, as in Figure 7.23.

However, there are substantial differences. Earlier we discovered that the
inverter output voltage space phasor has only six active positions, and two zero states
Figure 7.29 Block diagram of typical direct torque control scheme.
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(see Figure 7.19), corresponding to the eight possible combinations of the six
switching devices. This means that at every instant there are only eight options in
regard to the voltage that we can apply to the motor terminals. In the field-oriented
approach, PWM techniques are employed to alternate between adjacent unit
vectors to produce an effective voltage phasor of any desired magnitude and
instantaneous position. However, with direct torque control, only one of the eight
intrinsic vectors is used for the duration of each sample, during which the estimated
stator flux and torque are monitored.

The motor model is exposed to the same inputs as the real motor, and from it
the software continuously provides updated estimates of the stator flux and torque.
These are compared with the demanded values and as soon as either strays outside its
target hysteresis band, a logical decision is taken as to which of the six voltage
phasors is best placed to drive the flux and/or torque back onto target. At that
instant the switching is changed to bring the desired voltage phasor into play. The
duration of each sample therefore varies according to the rate of change of the two
parameters being monitored: if they vary slowly it will take a long time before they
hit the upper or lower hysteresis limit and the sample will be relatively long,
whereas if they change rapidly, the sample time will be shortened and the sample
frequency will increase. Occasionally, the best bet will be to apply zero voltage, so
one of the two zero states then takes over.
9.2 Control of stator flux and torque
We will restrict ourselves to operation below base speed, so we should always bear
in mind that although we will talk about controlling the stator flux, what we really
mean is keeping its magnitude close to its normal (rated) value at which the
magnetic circuit is fully utilized. We should also recall that when the stator flux is at
its rated value and in the steady state, so is the rotor flux.

It is probably easiest to grasp the essence of the direct torque method by focusing
on the stator flux linkage, and in particular on how (a) the magnitude of the stator
flux is kept within its target limits and (b) how its phase angle with respect to the
current is used to control the torque.

The reason for using stator flux linkage as a reference quantity is primarily the
ease with which it can be controlled. When we discussed the basic operation of the
induction motor in Chapter 5, we concluded that the stator voltage and frequency
determined the flux, and we can remind ourselves why this is by writing the voltage
equation for the stator as

VS ¼ ISRS þ djS

dt

(We are being rather loose here, by treating space phasor quantities as real variables,
but there is nothing to be gained by being pedantic when the message we take away
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will be valid.) In the interests of clarity we will make a further simplification by
ignoring the resistance voltage term, which will usually be small compared with VS.
This yields

VS ¼ djS

dt
or; in integral form; js ¼

Z
VS dt

The differential form shows us that the rate of change of stator flux is determined by
the stator voltage, while the integral form reminds us that to build the flux (e.g.
from zero) we have to apply a fixed volt-second product, with either a high voltage
for a short time, or a low voltage for a long time. We will limit ourselves to the fine-
tuning of the flux after it has been established, so we will only be talking about very
short sample intervals of time (Dt) during which the change in flux linkage that
results (DjS) is given by

DjS ¼ VSDt

As far as we are concerned, jS represents the stator flux linkage space phasor, which
has magnitude and direction relative to the stator reference frame, and VS represents
one of the six possible stator voltage space phasors that the inverter can deliver. So if
we consider an initial flux linkage vector jS as shown in Figure 7.30(a), and assume
that we apply, over time, Dt, each of the six possible options, we will produce six
new flux-linkage vectors. The tips of the new vectors are labeled j1 to j6 in the
figure, but only one (j4) is fully drawn (dashed) to avoid congestion. There is also
the option of applying zero voltage, which would of course leave the initial flux-
linkage unchanged.

In (a) option 4 results in a reduction in amplitude and (assuming anticlockwise
rotation) a retardation in phase of the original flux, but if the original flux linkage
Figure 7.30 Space phasor diagram of stator flux linkage showing how the outcome of
applying a given volt-second product depends on the original phase angle. In (a) the
magnitude is reduced and the phase is retarded, while in (b) the magnitude is increased
and the phase is advanced.



Figure 7.31 Trajectory of stator flux linkage under steady-state conditions.
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had a different phase, as shown in diagram (b), option 4 results in an increase in
magnitude and an advance in phase. It should be clear that outcomes vary according
to initial conditions, and therefore an extensive look-up table will be needed to
store all this information.

Having seen how we can alter the magnitude and phase of the stator flux, we
now consider the flux linkage phasor during steady-state operation with constant
speed and torque, in which case we know that ideally all the space phasors will be
rotating at a constant angular velocity.

The locus of the stator flux linkage space phasor (jS) is shown in Figure 7.31. In
this diagram the spacing of hysteresis bands indicated by the innermost and
outermost dashed lines have been greatly exaggerated in order to show the
trajectory of the flux linkage phasor more clearly. Ideally, the phasor should rotate
smoothly along the center dotted line.

In this example, the initial position shown has the flux linkage at the lower
bound, so the first switching brings voltage vector 1 into play to drive the amplitude
up and the phase forward. When the upper bound is reached, vector 3 is used,
followed by vector 1 again and then vector 3. Recalling that the change in the flux
linkage depends on the time for which the voltage is applied, we can see from the
diagram that the second application of vector 3 lasts longer than the first. (We
should also reiterate that in this example only a few switchings take place while the
flux rotates through 60�: in practice the hysteresis band is very much narrower, and
there may be many hundreds of transitions.)

We are considering steady-state operation, and so we would wish to keep the
torque constant. Given that the flux is practically constant, this means we need to
keep the angle between the flux and the stator current constant. This is where the
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torque hysteresis controller shown in Figure 7.29 comes in. It has to decide what
switching will best keep the phase on target, so it runs in parallel with the magnitude
controller we have looked at here. Each controller will output a signal for either an
increase or decrease in its respective variable (i.e. magnitude or phase) and these are
then passed to the optimal switching table to determine the best switching strategy
in the prevailing circumstances (see Figure 7.29).

As we saw when discussing field-oriented control, it is not possible to make very
rapid changes to the rotor flux because of the associated stored energy. Because the
rotor and stator are tightly coupled it follows that the magnitude of the stator flux
linkage cannot change very rapidly either. However, just as with field-oriented
control, sudden changes in torque can be achieved by making sudden changes to
the phase of the flux linkage, i.e. to the tangential component of the phasor shown
in Figure 7.31.
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