
Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Optimization techniques to enhance the performance of induction motor
drives: A review

M.A. Hannana,⁎, Jamal A. Alib, Azah Mohamedc, Aini Hussainc

a Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Malaysia
b General Company of Electricity Production Middle Region, Ministry of Electricity, Iraq
c Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Malaysia

A R T I C L E I N F O

Keywords:
Induction motor drive
Optimization algorithms
Scalar control
Vector control
Fuzzy logic controller

A B S T R A C T

Induction motor (IM) drives, specifically the three-phase IMs, are a nonlinear system that are difficult to explain
theoretically because of their sudden changes in load or speed conditions. Thus, an advanced controller is
needed to enhance IM performance. Among numerous control techniques, fuzzy logic controller (FLC) has
increasing popularity in designing complex IM control system due to their simplicity and adaptability. However,
the performance of FLCs depends on rules and membership functions (MFs), which are determined by a trial-
and-error procedure. The main objective of this paper is to present a critical review on the control and
optimization techniques for solving the problems and enhancing the performance of IM drives. A detailed study
on the control of variable speed drive, such as scalar and vector, is investigated. The scalar control functions of
speed and V/f control are explained in an open- and closed-loop IM drive. The operation, advantages, and
limitations of the direct and indirect field-oriented controls of vector control are also demonstrated in
controlling the IM drive. A comprehensive review of the different types of optimization techniques for IM drive
applications is highlighted. The rigorous review indicates that existing optimization algorithms in conventional
controller and FLC can be used for IM drive. However, some problems still exist in achieving the best MF and
suitable parameters for IM drive control. The objective of this review also highlights several factors, challenges,
and problems of the conventional controller and FLC of the IM drive. Accordingly, the review provides some
suggestions on the optimized control for the research and development of future IM drives. All the highlighted
insights and recommendations of this review will hopefully lead to increasing efforts toward the development of
advanced IM drive controllers for future applications.

1. Introduction

Induction motors (IMs) are widely used in numerous applications
and account for approximately 60% of the total industrial electricity
consumption (including factories, industrial sectors, air compressors,
fans, railway tractions, pumps, blowers, cranes, textile mills, electric
home appliances, vehicles, modes of transportation, and wind genera-
tion systems) because they are dependent on the conversion of
electrical to mechanical energy [1–3]. Moreover, IMs are easy to
maintain due to their simple structure, reliability, high efficiency, and
low cost [4–7]. The distinction of IM has led to its global increase in
sales of up to 85% in electrical motors [7].

In the past, speed controls used in the DC motors drive because of
their simple design in controlling flux and torque. However, DC motors
are difficult to maintain, and they corrode and spark [3,8–10]. Then,
AC motors have been used to replace DC motors; semiconductor

devices, such as insulated gate bipolar transistor metal oxide semi-
conductor field-effect transistor, have been developed and improved
[8–11]. In addition, the designs of AC motors use digital signal
processor (DSP), microcontroller, and field programmable gate array
to solve difficult and fundamental challenges [3,10–12]. However, the
torque, flux, and speed controls of these IMs are difficult to control
because of their complex design and nonlinear model [9,10,13,14].
Therefore, two main methods, namely scalar and vector control, have
been developed to control the IM [1,3,4,7,13].

The scalar control method has been used in several studies because
of its simple structure, low cost, easy design, and low steady-state error
[1,3,4,13,15]. Moreover, it has the advantage of stability in controlling
middle to high speed and does not require the parameters of an IM
[16]. This method has been used by many researchers in controlling
IMs (using DSP) [1,4,17–21], single- [22] and five-phase IMs [27], and
permanent magnet synchronous motors (PMSMs; using DSP) [23–26].
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Conversely, the vector control method is the most commonly used
control scheme in previous research because of its high performance in
controlling IMs [9,10,13,28,29]. Its control principle is based on the
magnitude of obtained amplitudes and frequency voltages in control-
ling IMs. Thus, the vector control is used in controlling the position of
the flux, voltage, and current vectors [3,13,24]. However, it has the
disadvantage of coupling between the electromagnetic torque and flux
that leads to difficulty and complexity of the IM controller [3,10], and it
is also affected by the sensitivity of IM parameters [3,28,30]. This first
problem can be solved through field-oriented control (FOC) and direct
torque control (DTC) [26,28,29,31]. FOC consists of two control
techniques, namely direct FOC (DFOC), which was proposed by
Blaschke in 1972 [32], and indirect FOC (IFOC), which was proposed
by Hasse in 1968 [33]. FOC has been used in several studies because of
the high performance of controller in IM drives. DFOC and IFOC aim
to obtain torque and flux decoupling even with their complex mathe-
matical equations for IM. These methods have been used by numerous
researchers in several applications [3,7,10,14,15,30,31,34–38].

Many control schemes are used to control the IM drive system.
Among such schemes are the conventional controllers, namely, propor-
tional–integral–derivative (PID) control, proportional–integral (PI)
control, and proportional–derivative control. These conventional con-
trollers were proposed by Taylor Instrument Company in 1936 [39].
PID is considered a good control technique because of its easy to use
design, low cost, and simple structure; thus, it is utilized in numerous
applications along with scalar and vector techniques [38,40,41]. PID
controller is also used in regulating main variables, such as voltages,
currents, speed, torque, and rotor flux in IMs [42]. However, the
parameters for PID controller, namely proportional gain (kp), integral
gain (ki), and derivational gain (kd), are difficult to obtain. These
parameters play an important role in model control in terms of
sensitivity and stability [16,30,38,43,44]. Therefore, PID control para-
meters should be suitable with sudden changes in speed or mechanical
load [16]. The coefficient of PID controller can be identified using
several methods, such as Ziegler–Nichols (Ziegler and Nichols, 1940)
[45], Cohen–Coon (1953), Lambda tuning method (Dahlin, 1968) [46],
and visual loop tuning method. These methods, however, experience
process upset, undergo trials and errors, and require several calcula-
tions and mathematical models [47–49].

The fuzzy logic controller (FLC) was proposed by Zadeh in 1965
[50]. Recently, it has been used due to its adjusted online control
according to adaptive modeling with sudden event changes in systems
[14,51]. Moreover, FLC does not require an exact mathematical model;
it can handle both linear and non-linear systems; and it is based on
linguistic rules, which is the basis of human logic [30,44,52–55].
Therefore, FLC has become increasingly popular in designing the
control systems of several models, such as in Refs. [1,16,56–59]; it
was used to improve the control for the scalar speed control of IMs. In
Refs. [14,30,36,52,60–63], FLC was used to develop the vector control
for IM. In Refs. [60,64,65], FLC was used to control the variable speed
of wind turbine based on dual star induction generator. FLC was also
used in Ref. [66] to provide optimal control for the voltage and
frequency of an AC microgrid. In Refs. [67,68], FLC was used to
improve the sensorless stator FOC on an IM. FLC was also used to
control a five-phase IM [69].

Pulse width modulation (PWM) techniques for driving three-phase
voltage source inverter (VSI) play an important role in controlling IMs
by dominating the switching devices [49,58,70–72]. Therefore, the
main principle of VSI is to regulate the AC output voltage and
frequency from a constant DC supply voltage. Moreover, PWM
techniques develop the output waves of the inverter for high efficiency,
low distortion, minimized harmonics, less switching loss, easy imple-
mentation, and less computation time [54,55]. Sinusoidal PWM
(SPWM) is a PWM method in which the reference modulation wave
is compared with a triangular carrier wave, and the intersections define
the switching instants. Within every carrier cycle, the average value of

the output voltage becomes equal to the reference value; SPWM is also
a simple and easy structure [73,74]. Space vector PWM (SVPWM) is
one of the most popular PWM technique that has recently gained
interest among researchers. Meanwhile, the hysteresis band PWM
(HBPWM) and random PWM (RPWM) reduce switching losses and
harmonics, respectively [19,27,49,71,73,75]. In Ref. [76], Piao and
Hung reported a unified SVPWM technique for a multilevel inverter
that requires complex nonlinear calculation involving modulation
implicit functions of SVPWM. In general, most of the SVPWM requires
complex online computation which leads to difficulty in real time
implementation. Thus, the conventional SVPWM requires additional
memory that limits the choices of switching frequency and thereby
reducing the accuracy of SVPWM [77,78]. To solve this problem
genetic algorithm (GA) based SVPWM is utilized [79], but the GAs
requires much iteration to find the best results, which is time
consuming. An artificial neural network (ANN) is also used in
SVPWM [77,78] for efficient inverter operation. In Refs. [80–82], the
adaptive neural fuzzy inference system (ANFIS) based SVPWM is used
for the two-level inverters. Moreover, optimized hybrid modulation
strategies based on multiple divisions of active vector time and control
are utilized to improve the harmonic elimination performance, reduce
switching losses and current ripples of the IM drive [83,84]. However,
the above-mentioned methods encountered problems because of their
huge data requirement, long training, and learning times of linear and
nonlinear functions that consume huge memory for real-time imple-
mentation. In Ref. [85], a random forest (RF) regression based
implementation of space vector pulse width modulation (SVPWM)
for two-level inverter is utilized using BSA optimization to improve the
performance of the IM drive over conventional schemes in terms of
damping capability, settling time, steady-state error, and transient
response under different operating conditions.

Computational intelligence optimization algorithms are nature-
inspired computational methodologies that address complex real-world
problems. These algorithms can be divided into swarm intelligence
methods and evolutionary algorithms (EAs). Swarm intelligence opti-
mization algorithms generally use reduced mathematical models of the
complex social behavior of insects or animals. The most popular swarm
intelligence methods are particle swarm optimization (PSO) [86],
artificial bee colony (ABC) [87], and ant colony optimization (ACO)
[88]. The PSO mimics the movements of bird flocking or fish schooling
[89]. The ABC method is inspired by the food-searching mechanism of
honeybees and uses the foraging behavior of these insects [87].
Meanwhile, ACO was developed based on the behavior of ants when
searching for the optimal path between their colony and food source
[88]. EAs derive their working principles from natural genetic evolu-
tion. At each generation, the best individuals of the current population
survive and produce offspring that resembles them; hence, the
population gradually comprises enhanced individuals. Operations,
such as recombination, crossover, mutation, selection, and adaptation,
are involved in the EA process [90]. Popular EA paradigms are the
genetic algorithm (GA) [91], evolutionary programming, differential
evolution [92], evolutionary strategy, and genetic programming. These
algorithms are based on the principles of Darwinian theory and other
evolution theories of living beings. Recently, a numbers of researches
have been developed on multi-objective IM parameter estimation to
minimize the error between the estimated and the manufacturer data
using sparse grid optimization algorithm [93,94], BSA [55], explicit
model predictive control via quadratic programming [95].

Many real-world optimization problems involve nonlinearities and
complex interactions among problem variables, and therefore nature-
inspired optimization techniques are applied to solve such problems.
The problem-solving capacity of these techniques is generally achieved
by modifying existing algorithms, hybridizing algorithms, and devel-
oping new algorithms. Several nature-inspired optimization techniques
have been proposed to overcome the limitations of their predecessors.
The following descriptions highlight the recent nature-inspired opti-
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mization techniques published in scientific literature.
Recently, optimization techniques have been used in several studies

to improve the performance of control systems; for instance, FLC
design optimization techniques use differential search algorithm opti-
mization to develop FLC and control photovoltaic (PV) inverters [53].
Optimization techniques that are based on conventional controller
improve the control system in IM drives [96–98]. In Ref. [99], particle
swarm optimization (PSO) is was adopted to enhance FLC for max-
imum power point tracking (MPPT) in a grid-connected PV inverter. In
Refs. [57,100], GA was used in selecting PID coefficients to control the
speed of an IM. PSO improved the PID controller of an AVR in Ref.
[101]. In Ref. [102], a GA was utilized to enhance the fuzzy-phase plane
controller for the optimal position/speed tracking control of an IM. The
GA–PSO algorithm was applied to improve indirect vector control for
the loss minimization operation and optimal torque control of an IM in
Ref. [103]. In Ref. [104], PSO was utilized as a model-parameter
identification method for permanent magnet synchronous motors. An
advanced predictive torque control has been reported to control IM
drives allowing high performance and fast dynamics using multi-
objective fuzzy decision making [105], Kalman filter covariance tech-
nique [106] and finite-control set model predictive control [107]. In
Refs. [55], backtracking search algorithm (BSA) optimization techni-
que was used to enhance the performance of the fuzzy logic speed
controller for IMs. However, optimization techniques generally have
limitations on global minimum, trial-and-error procedure, local mini-
ma, and optima trapping; they also have a weakness in diversifying the
algorithms and computational time to achieve best optimization
performances. To solve the above optimization problems, a novel
quantum lightning search algorithm (QLSA) is applied to improve
the FLC for controlling the speed response of the IM drive in terms of
damping capability and transient response under different load and
speed conditions over many others FLC based optimization techniques
[108].

In thispaper, different control and optimization techniques are
reviewed to create an advanced control scheme on conventional
scalar and vector control to achieve high IM drive system perfor-
mance. A tabular comparison of existing optimization algorithms in
different controllers and platforms is analyzed for further develop-
ment of the IM drive control. Issues and challenges of the existing
IM drive controller are also highlighted toward providing sugges-
tions. Thus, this paper highlights the existing challenges and
provides recommendations for the improvement of future ad-
vanced optimized IM drive controller.

2. Variable frequency drives (VFDs)

The overall IM control system generally comprises four main
parts: IM, control system, three-phase inverter, and load, as shown
in Fig. 1.

Several studies have focused on IM control methods. In an IM
control development survey in 1946, Weygandt and Charp used an
analog computer to investigate the performance of a transient IM
[109,110]. In 1956, Bell Laboratories invented a silicon-controlled
rectifier or thyristor for motor control [111]. In 1959, Kovacs and Racz
performed a new analysis to study the transient IM of rotating
reference frames [110]. At the beginning of the semiconductor revolu-
tion in the 1960s, power electronic devices were developed to assist in

designing several power electronic converters, such as rectifiers,
inverters, and DC–DC converters. Switching techniques were used to
control the IM drive. Accordingly, VFD methods were designed and
developed in many bodies of research for control purposes. IMs were
investigated in terms of improving speed control, implementing a
motor control strategy, and reducing energy losses. In IM control for
nonlinear dynamical systems, rotor flux and currents are difficult to
measure, and the heating of rotor resistance results in changes in
resistance value. These challenging issues should be addressed. VFDs
can be categorized into two main methods, namely scalar and vector
control methods (Fig. 2), according to IM speed, voltage, current, flux
and torque control [3,7].

2.1. Scalar control

Scalar control, in which the V/f control is based on the open- and
closed-loop control system of the IM speed, was introduced in 1960 for
IM control [111]. Speed response accuracy is not required in open-loop
speed controls, such as in ventilation, air conditioning, fan, and blower
applications [112].

The variable voltage and frequency of an IM in a closed-loop control
system are always employed to control the speed and torque of IM
drives [113]. The V/f control strategy is applied to IM drives to develop
the performance and dynamic response of the IM. This method offers
several advantages, including a simple structure, low cost, easy design,
and low steady-state error. Moreover, the initial current requirement is
low. The acceleration and deceleration can also be controlled by
controlling the change of supply frequency. The main advantage of
V/f control is that parameters are not required for IM implementation
[1,3]. V/f control is applied to control the supply voltage magnitude of
IMs, and it is one of the best choices for variable speed and torque
applications. Therefore, this research adopts V/f control for IM speed
drive controller implementation [27]. The main principle of V/f control
is to maintain the scalar voltage/frequency ratio constant, thereby
maintaining the magnetic flux in the maximum air gap. No explicit
relationship exists between voltage and frequency; however, the flow of
electromagnetic flux produces a relationship between voltage and
frequency, as shown as follows [3]:

ψ
V
f

K≅ ≅m
p

v
(1)

where ψm is the maximum air gap flux, Vp is the maximum phase
voltage, and Kv is the ratio of Vp to f .

The block diagram of the V/f control method and the slip speed (ω )sl
in Fig. 3 are the variable speed calculated on the basis of IM
characteristics. This slip speed control is added with ωrm to generate
ωsm. The synchronous speed is then converted to a synchronous
frequency to generate the peak voltage using V/f control. The main
limitation of this control is its low performance in low-speed operations
[1,3,7].

Many researchers have applied V/f control for controlling IM speed
[1,57–59,114–116]. The open-loop V/f control was used to adjust IM
speed response [4]. In Ref. [27], a five-phase IM was controlled with an
open-loop V/f constant control. V/f control was also utilized to control
the scheme of single- to three-phase PWM converters for low-power IM
drives [18]. The open-loop V/f control was used to control the SVPWM
of a three-level inverter [19,117]. V/f control was adjusted for the
motor operations of a stand-alone squirrel cage IM [20]. In Ref. [21],
the space vector–modulated current source inverter (CSI) with V/f
control was used to control an IM. In Ref. [22], a single-phase IM was
controlled with V/f, which was used for high-speed PMSM drives
[23,24,118,119] and PMSM for micro-gas turbine generation system
[25]. In Ref. [120], the V/f Control of an IM for a DC grid power-
leveling system was implemented. In Ref. [121], the V/f control of an
IM was fed by a SVPWM Z-source inverter and was applied to control aFig. 1. Architecture of the IM control system.
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doubly fed induction generator [122].

2.2. Vector control

Vector control is the most commonly used method in many IM
applications because of its high performance for IM control. The
principle of vector control is based on obtaining the magnitude and
phase of voltages or currents to control IMs. Thus, vector control is
based on controlling the position of the flux, voltage, and current
vectors of the IM. This control is performed depending on the Clarke
and Park transformations, which are responsible for generating torque
and flux, respectively. An IM operates similar to a separately excited
DC motor drive, in which the torque and flux are controlled by two
independent orthogonal variables, namely, the armature and field
currents, respectively [10,13,28,123]. This characteristic results in
disadvantageous coupling between electromagnetic torque and flux,
which leads to the difficulty and complexity of using IM controllers
[3,10,13,124]. This problem can be solved by using FOC.

2.2.1. Field oriented control (FOC)
In 1968–1971, Hasse and Blaschke from the Darmstadt University

of Technology in Germany proposed FOC [125]. FOC is classified into
two main methods, namely, DFOC and IFOC. DFOC uses two Hall
effect sensors that are mounted in air gap to estimate rotor flux on the
basis of air gap measurements. The block diagram of the DFOC for an
IM drive is shown in Fig. 4 [3,7]. Given that installing flux sensors in
the motor air gap is undesirable, IFOC is applied to solve the problem.
The main advantage of the IFOC is that it estimates rotor flux from
measured currents and speed without flux-measuring sensors. IFOC
has been used by many researchers because of its optimization
capability and the performance of the IM drive controller. IFOC aims

to achieve torque and flux decoupling despite the complexity of
mathematical equations for IMs. FOC has several disadvantages, such
as coordinate transformation, sensitivity to IM parameters, and
numerous sensor requirements [7,126]. The block diagram of IFOC
for IM drives is shown in Fig. 5.

Many researchers have integrated FOC into controlling systems; for
example, IFOC has been used in many IM drive applications to control
speed, current, and flux [10,13,14,35,38,67,127]. IFOC has also been
applied to control a double-star IM [30,128]. Speed estimation based
on a model reference adaptive system in IFOC was adopted for
controlling IM model [129]. A single-phase IM was controlled by
IFOC [130,131]. According to Ref. [132], a fault occurred in the IFOC
feedback sensors of IM. FOC was controlled on a synchronous motor
[133]. A wind generation system used IFOC to control speed variation
[134]. A PV system was supplied to IM by using the FOC method [135].
In Ref. [136], IFOC was used to control the speed of a five-phase IM.
Torque and flux controls were generated by FOC for high-performance
IM drives [36]. IFOC was improved using regulation algorithms for IM
[137]. IFOC enhanced a controller by replacing its speed control with
position control for IM [138,139]. IFOC also controlled a seven-level
diode-clamped inverter for IM [140].

2.2.2. Direct torque control (DTC)
Another control method known as DTC was proposed by Takahashi

in 1986 [141]. The principle of this control method is based on torque
reference magnitudes and stator flux reference subtracted from the
corresponding estimated values of feedback signals. The result is an
error signal, and the errors are processed through hysteresis band
controllers. The feedback signals of the torque and flux are calculated
from motor terminal voltages and currents to compute the number of
flux vectors. The torque and flux error generates changes in torque and

Fig. 2. Categorization of variable frequency drive methods.

Fig. 3. Closed-loop of scalar control for IM drive.
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flux by using comparators. Thus, the voltage vector selector is subjected
to torque and flux changes with the sector number of flux vector to
generate a duty ratio and supply it to the IM, as shown in Fig. 6. DTC
has many advantages over FOC, such as its simple implementation, not
requiring speed sensor, less motor parameter dependence, and high
dynamic torque response [3,29,141]. However, DTC also has many
disadvantages, such as its requirements for measuring voltages,
currents, and stator resistance. In addition, DTC presents current
ripple, variable-switching frequency behavior, high noise, and difficult
control, especially under low-speed conditions [126].

Several researchers have used DTC to improve different control
system applications, such as IM [142,143]. In Ref. [144], torque ripple
was minimized with constant switching frequency in the DTC of an IM
drive. The current research is focused on the comparison between FOC
and DTC to show their advantages and disadvantages [126]. VFD with

DTC was used to improve IM control [145]. In Ref. [146], DTC was
used to control PMSM [147], and a three-level inverter was utilized in
feeding the IM drive to minimize current ripples [148]. Table 1 shows a
comparison between the performance of scalar and vector control in
IM.

3. Review of optimization algorithms

At the end of the last century, optimization algorithms are devel-
oped for many applications to solve several problems. These algorithms
are classified according to the underlying principle of biology- and
physics-based algorithms. The first category is the biology-based
algorithm, which includes GA, harmony search algorithm, PSO,
bacteria foraging optimization, cuckoo search algorithm, bee colony
algorithm, ACO, firefly algorithm (FA), backtracking search algorithm

Fig. 4. Block diagram of DFOC for IM drive.

Fig. 5. Block diagram of IFOC for IM drive.
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(BSA), and lightning search algorithm (LSA). The second category is
the physics-based algorithm, which includes simulated annealing,
gravitational search algorithm (GSA), and chaotic optimization algo-
rithm (COA) [51]. In this research, some of the popular optimization
algorithms are explained in the succeeding sections.

3.1. Genetic algorithm (GA)

GA is a stochastic global adaptive search optimization technique
based on the mechanisms of natural selection proposed by [91]. This
algorithm is initialized to a population containing a number of
chromosomes, in which each one represents a solution to the problem
that is evaluated by an objective function [51,149]. GA is also
integrated into modern applications [150] to find the best parameter
values of rational functions. It is used in a control system on an electric
distribution network [151]. GA is also applied for MPPT to improve the
energy harvesting capability of a PV system [152]. It is also utilized to
improve the reliability and power quality of distribution systems [153].
However, GA has limitations; it cannot guarantee the identification of
global minimum; it also requires much time to achieve convergence
and fine tune all parameters (such as mutation rate, elitism percentage,
crossover parameters, and fitness normalization); and it is essentially a
trial-and-error procedure [154].

3.2. Particle swarm optimization (PSO)

PSO is an evolutionary computation technique developed by
Eberhart and Kennedy (1995); it is inspired by the social behavior of
bird flocking. PSO has been applied by numerous researchers because
of its verified robustness, ease of implementation, and global explora-
tion capability in various applications [155]. The particles in the PSO
algorithm search the space in two locations. The first location is the
best point where the swarm finds the current iteration (local best);
whereas the second location is the best point found through all
previous iterations (global best). The principle of PSO algorithm
depends on two factors, namely, velocity and position of particles.
These factors can be updated using the following equations [156]:

V t wV t c r P t X t c r P t X t( +1) = ( ) + ( ( ) − ( )) + ( ( ) − ( ))i
d

i
d

i
d

i
d

t
d

i
d

1 1 2 2 (2)

X t X t V t( + 1) = ( ) + ( + 1)i
d

i
d

i
d

(3)

where c1 and c2 are the social and cognitive rates, respectively; r andr1 2
denote the random in the interval (0, 1);V is the velocity factor of agent
i at iteration d ; t is the present iteration; w is the inertia factor; and X is
the position factor.

The PSO algorithm is performed in many applications, such as in
Ref. [157], to optimize the threshold parameters of the rule-based
power management strategy for hybrid electric vehicles and solve the
optimal power flow problem of power systems [158]. In Ref. [159],

Fig. 6. Block diagram of DTC for IM drive.

Table 1
Comparison between scalar and vector control.

Scalar control Vector control

1. Simple structure 1. Complex structure
2. Low cost and easy design in prototype implementation 2. High cost and difficult design in prototype implementation
3. Normal and low performance under low-speed conditions 3. High performance in FOC and low performance of DTC in a low-speed response
4. Does not require IM parameter identification 4. Requires and is sensitive to IM parameters
5. Requires one sensor, that is, speed sensor 5. Requires many sensors, such as six sensors in DFOC, four sensors in IFOC, and six sensors in DTC
6. Minimizes current ripple 6. High-current ripple in DTC
7. Does not require coordinate transformations 7. Requires a coordinate transformation in FOC
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PSO algorithm was used in improving the MPPT method to adjust the
rotor side converter of a wind turbine-fed induction generator [160].
PSO was also implemented to determine the optimal sizing of hybrid
PV, wind, and battery system [161]. PSO has several advantages,
including fast convergence and capability to solve complex optimiza-
tion problems in different application domains. However, PSO has
some limitations; it easily becomes trapped in local minima, and it
improperly selects control parameters, resulting in poor solution [162].

3.3. Firefly algorithm (FA)

FA is a nature-inspired algorithm based on the flashing patterns
and behavior of fireflies; it was proposed by Yang in 2007 at Cambridge
University [163]. This algorithm is based on three basic rules. First,
fireflies are attracted to one another regardless of their sex. Second,
fireflies move through a dim firefly to a brighter one. If no brighter
firefly exists, they move randomly. Third, the brightness of a firefly is
selected by the landscape of the objective function. The attractiveness
variation is calculated in terms of distance using the following equation
[163,164]:

δ δ e= γr
0

− 2
(4)

where δ is the variation in attractiveness, r is the distance among
fireflies, and δ0 is the attractiveness at r = 0. The attractiveness
movement among fireflies is calculated on the basis of the condition
in which a dimmer firefly i moves toward a brighter firefly j, as shown
as follows [163]:

x x x x σ= + δ e ( − ) + ϵi
t

i
t r

j
t

i
t

t i
t+1

0
−γ ij

2
(5)

where x is the attraction, σ is the randomization parameter, and ϵ is a
vector of random numbers drawn from a Gaussian distribution or
uniform distribution at time t .

FA is implemented in numerous applications, such as in Ref. [165],
for the optimal load frequency controller of a multi-area multi-source
system. This algorithm was also applied in selecting the optimum
switching angles for an 11-level cascaded H-bridge multi-level inverter
to minimize the harmonics of an output waveform [166]. In Ref. [167],
FA was used to solve the problem of wind turbine position, which
involved the selection of the best position. FA offers certain advantages,
such as easy implementation and automatic subdivision capability; it
also deals with multimodality. However, FA also has some limitations,
such as getting trapped into several local optima, performing local
search, and incapability to memorize or remember any history of a
good situation; thus, it may end up missing situations [168].

3.4. Gravitational search algorithm (GSA)

GSA, which was proposed by [169], is classified as physics-based
algorithm that depends on the law of gravity and mass interactions.
The operating principle of GSA is based on the laws of motion and
Newtonian gravity, which states that ‟every particle in the universe
attracts every other particle with a force that is directly proportional to
their masses and inversely proportional to the square of the distance
between them,” as expressed as follows [169]:

F G M M
R

= 1 2
2 (6)

where F is the magnitude of the gravitational force; G is the gravita-
tional constant; M1 and M2 are the mass of the first and second
particles, respectively; and R is the distance between the two particles.

According to Newton's second law, acceleration a is directly
proportional to force and inversely proportional to mass M , as
expressed as follows:

a F
M

=
(7)

Gravitational constant G t( ) is calculated as the initial value of the
gravitational constant G t( )0 multiplied by the ratio between initial time
t0 and actual time t , as shown as follows:

⎛
⎝⎜

⎞
⎠⎟G t G t t

t
β( ) = ( ) × , <1

β

0
0

(8)

The effect of forces between the mass with other masses and the
process of extracting the net force and acceleration is shown in Fig. 7.

The positions of the N number of the initialization agents are
initialized (that is, the masses are randomly selected within the search
interval provided), as shown as follows:

X X X X fori N= ( ,…, ,…, ), = 1, 2,…,i i i
d

i
n1 (9)

where Xi
d is the position of ith agent in the dth dimension, and n is the

space dimension. The computation aims to minimize problems and
determine the masses of each agent, as shown as follows:

best t min fit t( ) = ( )
j N

j∈{1, …, } (10)

Worst t max fit t( ) = ( )
j N

j∈{1, …, } (11)

m t
fit t Worst t

best t Worst t
( ) =

( ) − ( )
( ) − ( )i

i

(12)

M t m t
m t

( ) = ( )
∑ ( )

i
i

j
N

i=1 (13)

The total force F computation in different directions in the ith
agent, acceleration a, velocity computation V, position X, and gravita-
tional constant G of the agents at the next iteration t are expressed as
follows:

G t G e( ) = αt T
0

(− / ) (14)

F t G t
M M

R ε
X t X t( ) = ( )

×
+

( ( ) − ( ))ij
d pi aj

ij
j
d

i
d

(15)

∑F t rand F t( ) = ( )i
d

j Kbest j i
j ij

d

∈ , ≠ (16)

a t
F t
M t

( ) =
( )
( )i

d i
d

i (17)

v t rand v t a t( + 1) = × ( ) + ( )i
d

i i
d

i
d (18)

x t x t v t( + 1) = ( ) + ( + 1)i
d

i
d

i
d (19)

Many applications have been used for GSA optimization algorithm
[170,171] to find the optimum solution for short-term hydrothermal
scheduling problem and enhancing its performance. GSA is implemen-
ted to solve different single- and multi-objective optimal power flow
problems [170] and improve control methodology for self-excited
induction generator [172]. It is also used to enhance the load frequency
control of multi-area power system and solve the identification

Fig. 7. Mass effects with other masses.

M.A. Hannan et al. Renewable and Sustainable Energy Reviews 81 (2018) 1611–1626

1617



problem for turbine regulation under load and no-load conditions
[173,174]. GSA has the advantages of fast convergence for solution
compared with other conventional optimization techniques that are
dependent on the physical laws (Newtonian laws). However, it has
some limitations, such as being easily trapped in local minima and
weakness in strategy to diversify the population of the algorithm
[172,175].

3.5. Backtracking search algorithm (BSA)

BSA optimization technique, which was proposed by Civicioglu
[176], is an evolutionary computation technique for producing a trial
population that includes two new crossovers and mutation operators.
BSA dominates the value of the search on the best populations and in
the space boundary to find remarkably sturdy exploration and ex-
ploitation capabilities. Thus, it has been proven in several studies as
one of the most powerful optimization techniques. BSA structure
consists of five parts: initialization, selection-I, mutation, crossover,
and selection-II. The initialization process is the primitive configura-
tion of population for the numerical values of population and is
expressed in the following equation [176]:

X rand up low low= . ( − ) +ij j j j (20)

where i N= 1,2,…, , in which N is the population size; and j D= 1,2,…, ,
in which D is the problem dimension. The historical population (oldXij)
to be used for calculating the search direction is constructed by

oldX rand up low low= . ( − ) +ij j j j (21)

oldXij remembers the population from a randomly chosen previous
generation for creating the search-direction matrix, which considers
the partial advantage of previous experiences to generate a new trial
population. The comparison between two random values is shown as:

ifa b then< , oldX ≔ Xij ij (22)

permutingoldX = (oldX )ij ij (23)

Mutation is a process that produces new population of the initial
and history population, as shown in Eq. (24), where F value controls
the amplitude of the search-direction matrix.

Mutant X F randn oldX X= + . . ( − )ij ij ij (24)

BSA generates a trial population and then takes a partial advantage
of its experiences from previous generations. Crossover is generated by
the trial population. The initial of the trial populations is taken from
the mutation. The crossover consists of two parts. The first part
generates the binary matrix called mapij. The second part is a process
comparison between population Xij and the trial population. Crossover
is used to obtain mapij updates. In addition, this part works on
boundary control mechanism for the trial population. The last part is
selection-II. In this part, optimization process runs to compare the
population Xij and trial population to obtain the best population, as
well as the objective value.

BSA algorithm is applied many modern applications to solve
problems, enhance the power flow of high-voltage DC power systems,
and generate solutions to ascertain distributed generators [177,178].
BSA is implemented to solve economic dispatch problems and find the
best position for distributed generators placement [179,180]. It is also
used to design optimal analog circuits and operational amplifier
circuits [181]. BSA has the advantages of being suitable for search
exploration process and mutation and crossover strategies. However,
its computation is time-consuming because of the use of the dual
population algorithm, wherein only one parameter is used to control
the amplitude of the search-direction matrix in the mutation phase;
moreover, crossover is complex [176].

3.6. Lightning search algorithm (LSA)

LSA is a modern optimization method proposed by Shareef et al.
[182]. LSA optimization allows the achievement of desired goals
according to several modern optimization techniques. LSA optimiza-
tion technique depends on the concept of a step leader propagation
mechanism called “lightning,” as shown in Fig. 8. LSA considers the
involvement of fast particles, known as projectiles, in the formation of
the binary tree structure of the step leader in the concurrent formation
of the two-leader tips at fork points, instead of a conventional step
leader mechanism. LSA mechanism consists of three steps: projectile
and step leader propagation, projectile properties, and projectile
modeling and movement, which will be explained in detail in the
succeeding sections.

Fig. 8. Step leaders descending from a storm cloud.

Table 2
Summary of the optimization algorithms for improving controller techniques.

References Optimization
algorithms

Controller
techniques

Platform

[102] GA FLC and PI Interface card
[185] GA PI Matlab/

Simulink
[47] GA FLC DSP
[186] GA ANN DSP
[188] GA PI dSPACE
[189] GA Hybrid FLC–PI dSPACE
[10] GA Sliding Matlab/

Simulink
[57] GA PI dSPACE
[104] PSO Intelligent model Matlab/

Simulink
[99] PSO FLC Matlab/

Simulink
[190] PSO FLC Matlab/

Simulink
[191] PSO ANFIS Matlab/

Simulink
[192] PSO FLC Matlab/

Simulink
[182] LSA FLC DSP
[108] QLSA FLC DSP

[54] GA and PSO PID Matlab/
SimulinkHybrid FLC–PI

[103] Hybrid GA–PSO PI Matlab/
Simulink

[194] BSA PID Matlab/
Simulink

[195] BSA PI and PID Matlab/
Simulink
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3.6.1. Projectile and step leader propagation
Many atoms are observed near thunderclouds in the form of

hydrogen, nitrogen, and oxygen; moreover, the intensive freezing of
water molecules forms ice at intense speeds, which results in the
separation of hydrogen and oxygen atoms and is ejected in a random
direction as projectiles. LSA techniques consider each projectile as the
initial population size. The projectile term is similar to the particle and
agent term in PSO and GSA techniques, respectively [182].

3.6.2. Projectile properties
Projectile moves in the atmosphere; however, it loses its kinetic

energy during elastic collisions with molecules and atoms in the air.
Projectile velocity is expressed as

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥v

v c
sF
mc

= 1− 1
1−( / )

−p
i

0
2 2

−2 −1/2

(25)

where vp is the current velocity of the projectile, v0 is the initial velocity
of the projectile, Fi is the constant ionization rate, c is the light speed;m
is the mass of the projectile; and s is the length of the path traveled. The
number of projectiles is increased by adding channels that are created
during forking, which results in an increased population size. LSA
technique creates forking by using two methods. The first method
generates symmetrical channels, because the nuclei collision of the
projectile is realized by using the opposite number, as shown as
follows:

p a b p= + −i i (26)

where pi is the opposite projectile in one dimension, a and b are
boundary limits, and pi is the original projectile in one dimension. The
population may improve in some complex solutions. In the second type
of forking, a channel is assumed to appear at a successful step leader tip
because of the energy redistribution of the most unsuccessful leader
after several propagation trials. The unsuccessful leader can be
redistributed by defining the maximum allowable number of trials as
channel time. In this case, the population size of step leaders does not
increase.

3.6.3. Projectile modeling and movement
Three types of projectile are developed to represent the transition

projectiles that generate the first-step leader population N. Transition
projectile may be in a random direction through the transition formed
by an ejected projectile from the thunder cell. Therefore, transition
projectile can represent a random number by forming a random
distribution in space. The probability density function f x( )T of the
standard uniform distribution can be represented as

⎧⎨⎩f x
b a for a x b

for x a or x b
( ) =

1/( − ) ≤ ≤
0 < >

T
T

T
(27)

where xT is a random value that represents the initial tip energy Esl_i of
the step leader sli; a is the lower bound of the solution space; b is the
upper bound of the solution space; SL sl sl sl sl= [ , , ,…, ]N1 2 3 are the step
leaders for the population of N; and P P P P P= [ , , ,…, ]T T T T

N
T

1 2 3 are the
required solution dimensions for each population. The population of
the leader moves to space, depending on the activity projectiles, and
ionizes the section in the vicinity of the old leader tip in the next step.
The new position of the projectile is formed by an exponential
distribution with shaping parameter μ. The probability density function
f (x )s of an exponential distribution is

⎪
⎪⎧⎨
⎩

f x
e for x

for x
( ) =

≥0

0 ≤0
s μ

s

s

1 − xs
μ

(28)

where μi is the shaping parameter. In the LSA mechanism, μi is
considered as the distance between the lead projectile pL and the space
projectile pi

S under consideration. The new position is defined as

p p exprand μ= ± ( )i
s

i
s

inew (29)

where exprand is a random exponential number for μi. The new position
pi

s
new

may find a good solution by obtaining a new position pi
s
new

and
update to pi

s. Otherwise, their positions will remain unchanged until
the next step. When the step leaders access near the ground, the
associated projectile has insufficient potential to ionize large sections in
front of the leader tip. Therefore, the lead projectile can be represented
as a random number generated by the standard normal distribution
with the shape parameter μand the scale parameter σ . The normal
probability density function f x( )L is expressed as

f x
σ π

e( ) = 1
2

L
x μ

σ
− ( − )

2

L 2

2
(30)

In LSA technique, σL is the scalar parameter that exponentially
decreases as it finds the best solution, μLfor the lead projectile pL. The
new position of pL is represented as

p p normrand μ σ= ± ( , ),new
L

i
L

L L (31)

where normrand is a random number generated by the normal
distribution function. LSA has the advantages of fast convergence for
solution compared with the other conventional optimization techni-
ques, because it is inspired by natural phenomenon of lightning.
Moreover, it does not require numerous setting algorithm parameters.
However, it easily gets trapped in local minima and requires searching
for the best new position of the step leader.

Fig. 9. Optimization technique based on PID speed controller for scalar control.
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3.7. Quantum lightning search algorithm (QLSA)

The concept of quantum lightning search algorithm (QLSA) in-
volves developing the original LSA [182] by searching for a new
position for the population to obtain the best position for step leaders.
At the beginning, QLSA is conducted to build memory according to the
mean of the best positions of the step leaders, which are called global
step leaders Gsl( )ij

t . Global step leaders represent the best step leaders
that can obtain the minimum value of the evaluation. In QLSA, each
step leader exhibits the quantum behavior with its quantum state
formulated by a wave function ψ( )w . ψw

2 is the probability density
function, which depends on the potential field where the step leader
lies. QLSA achieves the attraction and convergence of each step leader
with a global minimum and searches for the best position by relying on

the stochastic attractor of step leaders pj as represented in the following
novel equation [108].

p
a P b Gsl

c SF
=

. + .
.ij

t ij
t

ij best
t

ij
t

ij
t

ij
t

,

(32)

for i N= 1,2,…, , j D= 1,2,…, , and t T= 1,2,…, , where N , D, and T are
the population size, the problem dimension, and the maximum number
of iteration, respectively; a, b, and c are three uniformly distributed
random numbers on the range (0,1) for the jth dimension of step
leaders; Pij best

t
, is the best step leader for each population; and SF is the

scale factor, which is suggested to set between 4 and 20.
QLSA has several distinctive properties when compared with the

original LSA. First, QLSA explores new positions using an exponential
distribution obtained through the global convergence between step

Fig. 10. Optimization technique based on PID controllers for (a) DFOC and (b) IFOC.
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leaders. Second, QLSA calculates the mean best position to enhance the
original LSA. Moreover, each step leader in QLSA cannot approach the
global best position without regarding other step leaders. The distance
between step leaders and MeanBestj

t directs the new position distribu-
tion for each iteration as follows.

P p β MeanBest P ln u= ± − (1/ )ij
t

ij
t

j
t

ij
t

ij
+1

(33)

Suppose the global best position for a step leader is far from the
other step leaders, the MeanBestj

tmay be pulled toward the global best
position. By contrast, in QLSA, the step leaders around the global best
position may move in any direction to obtain the best new position. In
particular, the QLSA algorithm is tested and validated through func-
tional characteristics, such as dimensionality, separability, and mod-
ality [182–184]. The modality of a function refers to the number of
vague peaks in the function surface. A function is multimodal if it has
two or more vague peaks. An algorithm that encounters these peaks
while searching may be trapped in one of the local minima. Separability
indicates the difficulty level of various benchmark functions. In general,
separable functions are easier to solve than non-separable functions
because each variable of a function is independent of other variables.
Moreover, the difficulty of a problem also increases along with function
dimensionality. For highly non-linear problems, dimensionality may be
a significant barrier for nearly all optimization algorithms.

4. Optimization algorithm-based controller techniques

Optimization algorithms are used in many applications to improve
their performance and efficiency. This section explains some of the
previous works on controller techniques based on optimization algo-
rithms. For example, GA is used to improve FLC and PI controller for
the optimal speed tracking control in the IFOC of an IM [102]; to
design the fuzzy gain scheduling of a PI controller for speed control in
the IFOC of an IM [185]; to optimize FLC by selecting a factor for the
input of membership functions (MFs) [47]; to find the best PI speed
controller parameters for the motor and prototype implementation of
DSP; to determine the optimal weights between the membership and
rule layers of a recurrent fuzzy neural network and implemented using

DSP [186,187]; to enhance the PI speed controller parameters in the
V/f control of an IM and implement using DSP [188]; to develop the
performance of an IM and prototype implementation using dSPACE,
which is based on a hybrid FLC–PI controller [189]; to optimize the
sliding surface slope and thickness of the boundary layer implemented
using DSP [10]; and to improve ANFIS speed controller in V/f control
for IM by searching for the best PI parameter values and implemented
using DSP [57]. PSO is used to identify optimal intelligent model
parameters for high-power PMSM [104]; to optimize nine-rule FLC for
MPPT in a grid-connected PV inverter [99]; to improve FLC by
searching for the best values of the setting values of the input MFs in
the MPPT algorithm for PV systems [190]; to improve the speed
control of IM [191]; and to optimize FLC by searching for the best
values for the scaling factor of the input and output FLC, thereby
enhancing the speed control of a quasi-Z source DC/DC converter-fed
drive [192,193]. In Ref. [54], PID and FLC–PI controllers were
improved with the GA and PSO. The PID controller was enhanced
through the optimization methods to find the best values for PID
parameters. The FLC–PI controller was optimized with GA and PSO to
find the best values of the scaling factor for its input and output. In Ref.
[103], a hybrid GA–PSO was tuned for a PI-speed controller and PI-
current controller in IFOC to minimize operation losses and the
optimal torque control of IM. In Ref. [194], BSA was used to tune
the PID parameters for DC torque motor systems. In Ref. [195], BSA
was applied to tune the PI and PID controller parameters for DC torque
motor systems. Table 2 summarizes the optimization algorithms for
improving controller techniques.

5. Challenges and recommendations

The controller techniques play an important role in enhancing the
performance of control systems. However, controller techniques en-
counter challenges and issues in implementing the control systems. In
this paper, optimization techniques are recommended to solve and
improve these issues, which are explained as follows.

Fig. 11. Optimization technique based on fuzzy logic speed controller for scalar control.
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5.1. Conventional controller challenges

Suitable parameters for IM control are difficult to obtain in a
conventional controller. Also, the conventional controller requires
mathematical modeling, which has high sensitivity on parameter
variations, sudden change in reference speed, temperature variation,
and load disturbances [16,30,38,43,44]. In this work, optimization
techniques are suggested to solve these problems on scalar or vector
control for IM drive, as discussed in the following sub-sections.

5.1.1. Optimization technique based on PID controller for scalar
control

Speed controller-based optimization techniques can be used to

improve the scalar IM drive control, as shown in Fig. 9. The
recommended optimization technique receives rotor speed error and
calculates objective functions, such as mean absolute error, root mean
square error, and mean square error. This optimization technique aims
to achieve good performance by minimizing the objective function
under sudden speed change and mechanical load conditions. Then, the
optimization technique searches for the best value of the conventional
PID speed controller parameters.

5.1.2. Optimization technique based on PID controller for vector
control

The optimization techniques based on speed, torque, and flux
controllers can be used to improve the DFOC system for IM drive, as

Fig. 12. Optimization technique based on FLC controllers for (a) DFOC and (b) IFOC.
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shown in Fig. 10(a). Fig. 10(b) shows the optimization technique based
on speed and current controllers in improving the IFOC system for an
IM drive. In both cases, these optimization techniques receive rotor
speed errors and calculate the objective functions. Upon minimizing
the objective functions under sudden speed change and mechanical
load conditions, the optimization technique finds the suitable para-
meters for the conventional PID speed, torque, and flux controller for
DFOC system, and PID speed and current controller for IFOC system.

5.2. FLC challenges

In the conventional FLC structure, the number and limits of each
MFs should be selected in a suitable position, which is set by the
designer using a trial-and-error procedure until the FLC provides a
favorable result. However, this task is difficult to achieve because of its
long computational time and effort to find the MF boundaries. Thus, an
adaptive FLC design technique should be used to control the IM speed
drive using an optimization technique, in which the exhaustive tradi-
tional trial-and-error procedure is avoided in obtaining the minimized
or best MFs. The generated adaptive MFs are then implemented in the
input and output of the fuzzy speed controller to solve the problems of
the scalar or vector control.

5.2.1. Optimization technique based on FLC controller for scalar
control

The optimization techniques based on fuzzy logic speed controller
can be used to enhance the scalar control for an IM drive, as shown in
Fig. 11. The recommended optimization technique receives rotor speed
error and calculates objective functions. This optimization technique
aims to achieve good performance by minimizing the objective func-
tions under a sudden change of speed and mechanical load conditions.
Then, the optimization technique searches for the best values for error,
change of error, and MF boundaries for the input and output of the
fuzzy speed controller to enhance the scalar control of the IM drive.

5.2.2. Optimization technique based on FLC controller for vector
control

The optimization techniques based on fuzzy logic speed, torque, and
flux controllers can be used to improve the DFOC system for an IM
drive, as shown in Fig. 12(a). Fig. 12(b) shows the optimization
technique based on fuzzy speed and fuzzy dq current controllers to
improve the adaptive IFOC system for an IM drive. In both cases, the
optimization technique receives rotor speed error and calculates
objective functions. Upon minimizing the objective functions under
sudden speed change and mechanical load conditions, the optimization
technique searches for the best values for error, change of error, and
MF boundaries for the input and output of the fuzzy logic speed,
torque, and flux controller for the DFOC system, and fuzzy speed and
fuzzy dq current controllers for the IFOC system.

6. Conclusion

IM drives significantly contribute either to the industrial electricity
consumption or the energy conversion from electrical to mechanical or
vice versa. Considerable amount of energy savings can be achieved if
VFDs are used to replace the existing non-adjustable IM speed drives.
Furthermore, an appropriate IM control can minimize loss and
enhance the efficiency of a drive system. Numerous controller techni-
ques and optimization algorithms are available for the IM drive, such
as the conventional controller. Moreover, FLC controllers are investi-
gated to address the issues of minimizing overshoot, settling time, and
steady-state error of the IM drive. Various control system platforms
explained the utilization of the optimization algorithms to improve the
performance of the controller. To fulfill the objective, issues and
challenges of controller techniques in the scalar and vector control
for IM drive are highlighted for future research and development

guidelines. Also some significant and selective suggestions for the
further development of the IM drive controller have been produced in
this review, such as:

i) Optimization technique based on conventional and FLC controller
for scalar and vector IM drive control can reduce the MFs and find
the best parameters for their controllers;

ii) A developed optimization technique can be applied in fuzzy type-2
controller, model free controller, or hybrid FLC–PI controller to
enhance the control of a multi-IM drive system;

iii) A developed optimization technique can be applied in multi-DC
motor drive or multi-PMSM drive to minimize the manufacturing
cost of the control system;

iv) An optimization technique can be developed to find the best error
and flux changes of the torque to minimize the current ripple,
noise, and frequency variation of an IM drive system;

v) The optimization technique can achieve robustness, damping
capability, enhanced transient responses, and significant speed
reduction responses in terms of overshoot, steady-state error, and
settling time to improve the overall performance of an IM drive
system.

These suggestions would be remarkable contributions toward the
maturity of IM drive control technologies. Thus, further development
of optimized controller for IM drives should dominate the market in
the future.
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